• 제목/요약/키워드: hypoxia inducible factor-1 alpha (HIF-$1{\alpha}$)

검색결과 109건 처리시간 0.026초

TP53I11 suppresses epithelial-mesenchymal transition and metastasis of breast cancer cells

  • Xiao, Tongqian;Xu, Zhongjuan;Zhang, Hai;Geng, Junsa;Qiao, Yong;Liang, Yu;Yu, Yanzhen;Dong, Qun;Suo, Guangli
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.379-384
    • /
    • 2019
  • Epithelial-mesenchymal transition (EMT) is widely-considered to be a modulating factor of anoikis and cancer metastasis. We found that, in MDA-MB-231 cells, TP53I11 (tumor protein P53 inducible protein 11) suppressed EMT and migration in vitro, and inhibited metastasis in vivo. Our findings showed that hypoxic treatment upregulated the expression of $HIF1{\alpha}$, but reduced TP53I11 protein levels and TP53I11 overexpression reduced $HIF1{\alpha}$ expression under normal culture and hypoxicconditions, and in xenografts of MDA-MB-231 cells. Considering $HIF1{\alpha}$ is a master regulator of the hypoxic response and that hypoxia is a crucial trigger of cancer metastasis, our study suggests that TP53I11 may suppress EMT and metastasis by reducing $HIF1{\alpha}$ protein levels in breast cancer cells.

4-Hydroxynonenal Promotes Growth and Angiogenesis of Breast Cancer Cells through HIF-1α Stabilization

  • Li, Yao-Ping;Tian, Fu-Guo;Shi, Peng-Cheng;Guo, Ling-Yun;Wu, Hai-Ming;Chen, Run-Qi;Xue, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10151-10156
    • /
    • 2015
  • 4-Hydroxynonenal (4-HNE) is a stable end product of lipid peroxidation, which has been shown to play an important role in cell signal transduction, while increasing cell growth and differentiation. 4-HNE could inhibit phosphatase and tensin homolog (PTEN) activity in hepatocytes and increased levels have been found in human invasive breast cancer. Here we report that 4-HNE increased the cell growth of breast cancer cells as revealed by colony formation assay. Moreover, vascular endothelial growth factor (VEGF) expression was elevated, while protein levels of hypoxia inducible factor 1 alpha (HIF-$1{\alpha}$) were up-regulated. Sirtuin-3 (SIRT3), a major mitochondria NAD+-dependent deacetylase, is reported to destabilize HIF-$1{\alpha}$. Here, 4-HNE could inhibit the deacetylase activity of SIRT3 by thiol-specific modification. We further demonstrated that the regulation by 4-HNE of levels of HIF-$1{\alpha}$ and VEGF depends on SIRT3. Consistent with this, 4-HNE could not increase the cell growth in SIRT3 knockdown breast cancer cells. Additionally, 4-HNE promoted angiogenesis and invasion of breast cancer cells in a SIRT3-dependent manner. In conclusion, we propose that 4-HNE promotes growth, invasion and angiogenesis of breast cancer cells through the SIRT3-HIF-$1{\alpha}$-VEGF axis.

Immunohistochemical Study of Steroidogenesis, Proliferation, and Hypoxia-related Proteins in Caprine Corpora Lutea during the Estrous Cycle

  • Chiu, C.H.;Srinivasan, R.;Tseng, T.H.;Chuang, R.F.;Wu, L.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권5호
    • /
    • pp.636-642
    • /
    • 2009
  • The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a product required for the establishment and maintenance of pregnancy. In the absence of pregnancy, the production of progesterone in the CL decreases and the structure itself regresses in size. The life span and function of the CL are regulated by complex interactions between stimulatory (luteotrophic) and inhibitory (luteolytic) mediators. When an ovum is released from a mature follicle, angiogenesis and rapid growth of follicular cells form the CL. The purpose of the present study was to determine whether steroidogenesis, proliferation, and hypoxiarelated proteins are expressed in caprine CL. The expression of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor $1{\alpha}$ (HIF-$1{\alpha}$) were determined in caprine CL during the estrous cycle. Cytochrome P450 side chain cleavage protein did not vary significantly during the estrous cycle; however, there was an increased expression of $3{\beta}$ -hydroxysteroid dehydrogenase in the early and middle stages, which rapidly decreased in the late stage. The same observations were made with respect to steroidogenic acute regulatory protein. Variations in progesterone content and expression of PCNA, HIF-$1{\alpha}$, and VEGF were consistent with this result. Thus, the steroidogenic proteins, PCNA, HIF-$1{\alpha}$, and VEGF in caprine CL are dependent on the stage of the estrous cycle.

Fluoxetine and Sertraline Attenuate Postischemic Brain Injury in Mice

  • Shin, Tae-Kyeong;Kang, Mi-Sun;Lee, Ho-Youn;Seo, Moo-Sang;Kim, Si-Geun;Kim, Chi-Dae;Lee, Won-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.257-263
    • /
    • 2009
  • This study aimed to investigate whether selective serotonin reuptake inhibitors (SSRIs) attenuate brain injury and facilitate recovery following photothrombotic cortical ischemia in mice. Male ICR mice were anesthetized and systemically administered Rose Bengal. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold light laser. The animals were treated with fluoxetine or sertraline once a day for 14 d starting 1 h after ischemic insult. Treatment with fluoxetine and sertraline significantly reduced the infarct size. The Evans blue extravasation indices of the fluoxetine- and sertraline-treated groups were significantly lower than that of the vehicle group. Treatment with fluoxetine and sertraline shifted the lower limit of the mean arterial blood pressure for cerebral blood flow autoregulation toward normal, and significantly increased the expression of heme oxygenase-1 (HO-1) and hypoxia-inducible factor-1 ${\alpha}$ (HIF-1 ${\alpha}$) proteins in the ischemic region. These results suggest that SSRIs, such as fluoxetine and sertraline, facilitate recovery following photothrombotic cortical ischemia via enhancement of HO-1 and HIF-1 ${\alpha}$ proteins expression, thereby providing a benefit in therapy of cerebral ischemia.

The MEK Inhibitor, PD98059 Blocks the Transactivation, but not the Stabilization or DNA Binding Ability, of Hypoxia-Inducible Factor-1$\alpha$

  • Hur, Eun-Seon;Chang, Keun-Young;Lee, Eun-Jung;Lee, Seung-Ki;Park, Hyun-Sung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.41-83
    • /
    • 2001
  • Under low oxygen tension, cells increase the transcription of specific genes that are involved in angiogenesis, erythropoiesis and glycolysis. Hypoxia-induced gene expression primarily depends on the stabilization of the subunit of Hypoxia-Inducible Factor-1 (HIF-1), which acts as a heterodimeric transactivator.(omitted)

  • PDF

Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis

  • Cho, Hyung-Ju;Kim, Chang-Hoon
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.59-64
    • /
    • 2018
  • The airway epithelium is the first place, where a defense mechanism is initiated against environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of the airway and the role of airway epithelium as mechanical barriers are essential in innate immunity. To maintain normal physiologic function, normal oxygenation is critical for the production of energy for optimal cellular functions. Several pathologic conditions are associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis patients. In a series of previous reports, we have found hypoxia-induced mucus hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier function by the production of VEGF, and down-regulation of junctional proteins such as ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper airway epithelium. In this mini-review, we briefly introduce and summarize current progress in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related pathophysiology in airway epithelium will suggest new insights on airway inflammatory diseases, such as rhinosinusitis for clinical application and drug development.

Dieckol Suppresses CoCl2-induced Angiogenesis in Endothelial Cells

  • Jung, Seung Hyun;Jang, In Seung;Jeon, You-Jin;Kim, Young-Mog;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • 제17권3호
    • /
    • pp.305-311
    • /
    • 2014
  • Dieckol is a polyphenol compound isolated from brown algae that has anti-oxidant, anti-inflammatory, and anti-tumor activity. We examined the anti-angiogenic effects of dieckol in endothelial cells under hypoxic conditions. Treatment with $CoCl_2$, a hypoxic mimetic agent, increased proliferation, adhesion, migration, and tube formation in HUVECs, as well as vessel sprouting in rat aortic rings, which correlated well with increased expression of hypoxia-inducible factor 1-alpha ($HIF1{\alpha}$) and ${\beta}1$-integrin. Dieckol suppressed $CoCl_2$-induced adhesion, migration, and tube formation in HUVECs and vessel sprouting in rat aortic rings. Dieckol treatment decreased $CoCl_2$-induced overexpression of $HIF1{\alpha}$ and its downstream signaling molecules, including ${\beta}1$-integrin/Fak, Akt/eNOS, and p38 MAPK. These results suggest that dieckol is a novel angiogenesis inhibitor and a potential treatment for angiogenesis-dependent diseases in humans, such as malignant tumors.

전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과 (Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells)

  • 김문현;김미현;박영자;장영채;박윤엽;송현욱
    • 한국식품과학회지
    • /
    • 제48권1호
    • /
    • pp.66-71
    • /
    • 2016
  • 델피니딘은 양전하를 뛰는 diphenylpropane의 polyphenolic ring 구조를 가진 주요한 안토시아닌 색소 중에 하나이다. 최근 연구에서 델피니딘은 항산화, 항염증 뿐만 아니라 항암 효능을 가진다고 보고되었다. 본 연구에서는 전립샘 암에서 종양의 성장과 신생혈관생성에 관련된 중요한 인자인 VEGF 발현에 대한 델피니딘의 억제 효과를 조사하였다. RT-PCR을 통해 델피니딘을 처리한 PC3M 전립샘 암세포 세포에서 EGF로 유도한 VEGF mRNA 발현 수준이 감소됨을 확인하였다. 또한 델피니딘은 VEGF의 전사인자인 HIF-$1{\alpha}$와 STAT3가 세포 핵으로 전위되는 것을 효과적으로 억제하였다. 한편 luciferase assay을 통해 HRE-promoter 활성을 확인해 본 결과, 델피니딘이 HIF-$1{\alpha}$의 전사 활성을 억제시켜 VEGF 발현을 감소시키는 것을 알 수 있었다. 그리고 델피니딘은 EGFR의 발현에는 영향을 미치지 않고, Akt, p70S6K, 4EBP1의 인산화를 특이적으로 억제하는 것으로 나타났다. 결론적으로 델피니딘이 HIF-$1{\alpha}$와 STAT3, VEGF 발현을 억제를 통하여 암세포 증식억제와 신생혈관형성을 억제하는 역할을 새롭게 확인하였다.

Yeast two-hybrid system을 이용한 Ref-1 (redox factor-1) 결합 단백질의 분리 및 동정 (Detection of Ref-1 (Redox factor-1) Interacting Protein Using the Yeast Two-hybrid System)

  • 이수복;김규원;배문경;배명호;정주원;안미영;김영진
    • 생명과학회지
    • /
    • 제14권1호
    • /
    • pp.26-31
    • /
    • 2004
  • 본 연구는 redox regulator로 알려 진 Ref-1 (Redox factor-1)과 결합하는 새로운 단백질을protein-protein interaction의 원리를 이용한 방법인 yeast two-hybrid assay로 검색, 동정하고, 검색된 단백질의 in vitro, in vivo 기능을 규명하는 데 그 목적을 두고, mouse 11-day Embryo cNA library를 prey로, full length REF-1을 bait로 하여 yeast strain 인 HF7C에 cotransformatiom시킨 후 histidine, leucine, tryptophan이 결핍된 SD plate에서 키워 자란 yeast transformants를 $\beta$-galactosidaseassay하여 screening하여 분리한 세 개의 clone중 한 clone이 DNA sequencing으로 확인한 결과 mouse thioredoxin임을 확인하였다.

Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

  • Xu, Chunlan;Sun, Rui;Qiao, Xiangjin;Xu, Cuicui;Shang, Xiaoya;Niu, Weining;Chao, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.313-320
    • /
    • 2014
  • The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia + vitamin E (250 mg/kg $BW^*d$) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma ($IFN-{\gamma}$) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and $I{\kappa}B{\alpha}$, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha ($HIF-1{\alpha}$ and $HIF-2{\alpha}$), Toll-like receptors (TLR4), P-$I{\kappa}B{\alpha}$ and nuclear factor-${\kappa}B$ p65(NF-${\kappa}B$ P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-${\kappa}B$ signaling pathway.