• 제목/요약/키워드: hypoxia/reoxygenation injury

검색결과 29건 처리시간 0.045초

Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70

  • Zhang, Jun;Wang, Haiyan;Sun, Xizhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1069-1078
    • /
    • 2021
  • Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.

EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway

  • Zhang, Chao;Wang, Deng-Feng;Zhang, Zhuang;Han, Dong;Yang, Kan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.584-590
    • /
    • 2017
  • Ginkgo biloba extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, ${\gamma}$-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

Remifentanil Protects Human Keratinocyte Through Autophagic Expression

  • Kim, Eok Nyun;Park, Chang Hoon;Woo, Mi Na;Yoon, Ji Young;Park, Bong Soo;Kim, Yong Ho;Kim, Cheul Hong
    • 대한치과마취과학회지
    • /
    • 제14권2호
    • /
    • pp.101-106
    • /
    • 2014
  • Background: Remifentanil, an ultra-short-acting mu-opioid receptor agonist, is unique from other opioids because of its esterase-based metabolism, minimal accumulation, and very rapid onset and offset of clinical action. Remifentanil can prevent the inflammatory response and can suppress inducible nitric oxide synthase expression in a septic mouse model. However, the effects of remifentanil on human keratinocyte and autophagy have yet to be fully elucidated during hypoxia-reoxygenation. Here we investigated whether remifentanil confers protective effect against hypoxia-reoxygenation in human keratinocyte and, if so, whether autophagy mediates this effect. Methods: The human keratinocytes were cultured under 1% oxygen tension. The cells were gassed with 94% $N_2$, and 5% $CO_2$ and incubated for 24 h at $37^{\circ}C$. To determine whether the administration of affects human keratinocytes hypoxia-reoxygenation injury, cells were then exposed to various concentrations of remifentanil (0.01, 0.1, 0.5 and 1 ng/ml) for 2 h. After remifentanil treatment, to simulate reoxygenation and recovery, the cells were reoxygenated for 12 h at $37^{\circ}C$. Control group did not receive remifentanil treatment. Normoxia group did not receive hypoxia and remifentanil treatment for 36 h. 3-MA group was treated 3-methyladenine (3-MA) for 1h before remifentanil treatment. Cell viability was measured using a quantitative colorimetric assay with MTT, showing the mitochondrial activity of living cells. Cells were stained with fluorescence and analyzed with Western blot analysis to find out any relations with activation of autophagy. Results: Prominent accumulation of autophagic specific staining MDC was observed around the nuclei in RPT group HaCaT cells. Similarly, AO staining, red fluorescent spots appeared in RPT group HaCaT cells, while the Normoxia, control and 3-MA groups showed mainly green cytoplasmic fluorescence. We here examined activation of autophagy related protein under H/R-induced cells by Western blotting analysis. Atg5, Beclin-1, LC3-II (microtubule-associated protein 1 light chain 3 form II) and p62 was elevated in RPT group cells. But they were decreased when autophagy was suppressed by 3-MA (Fig. 5). Conclusions: Although the findings of this study are limited to an in vitro interpretation, we suggest that remifentanil may have a beneficial effect in the recovery of wound from hypoxia-reoxygenation injury.

The Effect of Remifentanil Preconditioning on Injured Keratinocyte

  • Hong, Hun Pyo;Kim, Cheul Hong;Yoon, Ji Young;Kim, Yong Deok;Park, Bong Soo;Kim, Yong Ho;Yoo, Ji Uk
    • 대한치과마취과학회지
    • /
    • 제14권3호
    • /
    • pp.157-165
    • /
    • 2014
  • Background: Incisional site of surgical operation become transient ischemic state and then occur reoxygenation due to vasodilatation by inflammatory reaction, the productive reactive oxygen species (ROS) give rise to many physiologic results. Apoptosis have major role on elimination of inflammatory cell and formation of granulation tissue in normal wound healing process. Remifentanil can prevent the inflammatory response and can suppress inducible nitric oxide synthase expression in a septic mouse model. After cardiopulmonary bypass for coronary artery surgery, remifentanil can also inhibit the release of biomarkers of myocardial damage. Here we investigated whether remifentanil pretreatment has cellular protective effect against hypoxia-reoxygenation in HaCaT human keratinocytes, if so, the role of apoptosis and autophagy on this phenomenon. Methods: The HaCaT human keratinocytes were exposed to various concentrations of remifentanil (0.01, 0.05, 0.1, 0.5 and 1 ng/ml) for 2 h before hypoxia (RPC/HR group). These cells were cultured under 1% oxygen tension for 24h at $37^{\circ}C$. After hypoxia, to simulate reoxygenation and recovery, the cells were reoxygenated for 12 h at $37^{\circ}C$. 3-MA/RPC/HR group was treated 3-methyladenine (3-MA), autophagy inhibitor for 1h before remifentanil treatment. Cell viability was measured using a quantitative colorimetric assay with thiazolyl blue tetrazoliumbromide (MTT, amresco), showing the mitochondrial activity of living cells. To investigate whether the occurrence of autophagy and apoptosis, we used fluorescence microscopy and Western blot analysis. Results: The viability against hypoxia-reoxygenation injury in remifentanil preconditioning keratinocytes were increased, and these cells were showed stimulated expression of autophagy 3-MA suppressed the induction of autophagy effectively and the protective effects on apoptosis. Atg5, Beclin-1, LC3-II and p62 were elevated in RPC/HR group. But they were decreased when autophagy was suppressed by 3-MA. Conclusions: Remifentanil preconditioning showed the protective effect in human keratinocytes, and we concluded that autophagy may take the major role in the recovery of wound from hypoxia-reoxygenation injury. We suggest that further research is needed about the cell protective effects of autophagy.

Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

  • Long, Rui-ting;Peng, Jun-bo;Huang, Li-li;Jiang, Gui-ping;Liao, Yue-juan;Sun, Hang;Hu, Yu-dong;Liao, Xiao-hui
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.893-905
    • /
    • 2019
  • Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.

저산소-허혈 손상이 신생 흰쥐의 뇌 선조체(Striatum) Monoamine 대사에 미치는 영향 (Effect of Hypoxia-Ischemia on Striatal Monoamine Metabolism in Neonatal Rat Brains)

  • 지윤희;김형건;박우성;장영표
    • Clinical and Experimental Pediatrics
    • /
    • 제46권8호
    • /
    • pp.789-794
    • /
    • 2003
  • 목 적: 신생 흰쥐의 뇌에 저산소-허혈을 유발하여 선조체 monoamine과 그 대사물들의 변화를 관찰하여, 저산소-허혈 손상 시 dopamine과 monoamine의 역할을 관찰하고자 하였다. 방 법 : 생후 5-6일 된 신생 흰쥐의 우측 총경동맥을 결찰 후 우측 선조체에 microdialysis probe를 삽입하였다. 2시간 동안의 안정기를 거친 후, probe를 통해 기저치를 수집하고, 바로 8% 산소에 2시간 동안 노출시키고, 2시간 동안 회복시키며 20분 간격으로 수집한 샘플을 HPLC를 통해 분석하였다. 결 과 : 1) Dopamine은 저산소-허혈기에 급격히 증가하는 경향을 보였으나 통계적 유의성은 없었다(P>0.05). 2) DOPAC은 저산소-허혈 동안 기저치의 $23.0{\pm}4.2%$까지 감소하였다가, 재산소화 동안에 기저치의 $120.8{\pm}54.9%$까지 증가하였다(P<0.05). 3) HVA는 DOPAC과 같은 변화를 보였으나 덜 현저하였고, 저산소-허혈 동안 기저치의 $35.3{\pm}7.6%$까지 감소하였다가 재산소화 동안에 $105.8{\pm}32.3%$까지 회복되었다(P<0.05). 4) NE은 저산소-허혈 노출과 재산소화 동안 유의한 변화를 보이지 않았다(P>0.05). 5) 5-HIAA는 저산소-허혈 동안 서서히 감소하였다가 재산소화 동안 증가하였고, 그 변화는 통계적으로 유의하였다(P<0.05). 6) 실험 중 serotonin은 검출되지 않았다. 결 론: 저산소-허혈은 미성숙 신생 횐쥐의 뇌 선조체의 monoamine 대사에 영향을 끼쳤으며, 이 결과는 monoamine, 특히 dopamine과 그 대사물들이 신생 흰쥐 뇌의 저산소-허혈손상의 기전에 중요한 역할을 할 수 있다는 가능성을 제시한다.

NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1α expression levels during hypoxia/reoxygenation injury

  • Vu, Thi Thu;Kim, Hyoung Kyu;Le, Thanh Long;Nyamaa, Bayalagmaa;Song, In-Sung;To, Thanh Thuy;Nguyen, Quang Huy;Marquez, Jubert;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.201-211
    • /
    • 2016
  • Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment ($10{\mu}M$) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-$1{\alpha}$ ($PGC1{\alpha}$) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving $PGC1{\alpha}$ during cardiac HR injuries.

저산소 심장의 산소 재공급에 따른 심근 손상에 있어서 항산화제의 보호 효과 (Protective Effect of Antioxidants on the Reoxygenation Injury in Hypoxic Myocardium of Rat)

  • 윤형구;임정규;김명석
    • 대한약리학회지
    • /
    • 제24권1호
    • /
    • pp.53-61
    • /
    • 1988
  • 저산소 심근의 산소 재공급시에 보이는 심근 손상(oxygen paradox) 기전을 규명하고, 이의 예방법을 찾기 위한 연구의 일환으로 유독성 산소 대사물인 산소 라디칼의 관련성과 지질과산화활성화 및 항산화제의 심근 보호 효과를 검토하였다. 흰쥐 적출 심장을 Langendorff 심장관류법 으로 산소 및 glucose 공급을 중단한 cardioplegic 용액으로 관류 ($37^{\circ}C$, 90분)하여 저산소 상태를 만든 후, 계속해서 산소재공급 관류(20분)를 시행하여 저산소-산소 재공급 심근 손상을 유도 하였다. 심근 손상의 지표로 creatine phosphokinase(CPK), lactic dehydrogenase(LDH)의 관상관류액으로의 유출을, 그리고 지질과산화 척도로는malondialdehyde(MDA) 생성을 측정하였으며, 이에 대한 산소 라디칼 제거물질과 항산화제 ${\alpha}-tocopherol$ 및 butylated hydroxytoluene(BHT)의 효과를 검토하여 다음과 같은 성적을 얻었다. 1. 세포질 효소인 CPK 및 LDH의 유출과 지질과산화산물의 하나인 MDA의 생성은 산소 재공급과 더불어 급격히 증가하였다. 2. 산소 재공급시 세포질 효소의 유출과 MDA 생성은 높은 상관관계를 보였다. 3. Superoxide anion$(O_2)$의 제거 호소인 superoxide dismutase (10,000U), $H_2O_2$ 제거 효소인 catalase (25,000 U) 그리고 hydroxyl radical (OH) 제 거 물질인 dimethylsufoxide(10%)는 세포질 효소의 유출 증가와 MDA 생성 증가를 현저히 억제하였다. 4. 생리적 항산화물질인 ${\alpha}-tocopherol$.of (4.5 uM)과 합성 항산화제인 butylated hydroxytoluene(2 uM)은 산소 공급에 따른 MDA 생성 증가와 세포질 효소의 유출 증가를 용량의존적으로 억제하였다. 5. 항산화제들의 심근 보호 효과는 산소 재공급시 투여할 때보다는 저산소 관류시부터 투여한 경우에 더욱 현저하였다. 이상의 결과에서 저산소 심근의 산소 재공급은 유독성 산소 대사물인 산소 라디칼의 생성을 증가시키며, 그에 따른 지질성분의 과산화가 심근 손상을 일으키는데 관여할 것으로 여겨졌으며, 저산소-산소 재공급 심근 손상은 지질과산화 반응을 억제하는 항산화제에 의하여 방지될 것으로 사료되었다.

  • PDF

NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts

  • Thu, Vu Thi;Kim, Hyoung Kyu;Long, Le Thanh;Thuy, To Thanh;Huy, Nguyen Quang;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.305-314
    • /
    • 2016
  • Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating inflammation and fibrosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 ($10{\mu}mol/L$) treatment as experimental models. Addition of NecroX-5 significantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 ($TGF{\beta}1$) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, significantly increased production of tumor necrosis factor alpha ($TNF{\alpha}$), $TGF{\beta}1$, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of $TNF{\alpha}$, $TGF{\beta}1$, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the $TNF{\alpha}/Dcn/TGF{\beta}1/Smad2$ pathway.

허혈-재관류 유도 SH-SY5Y 모델에서 베타아밀로이드 생성에 미치는 석창포 추출물에 대한 뇌 신경보호 효과 (Neuroprotective Effects of Acorus gramineus Soland. on Oxygen-Glucose Deprivation/Reoxygenation-Induced β-amyloid Production in SH-SY5Y Neuroblastoma Cells)

  • 신수영;정진우;김철환;안은정;이승영;이창민;최경민
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.58-58
    • /
    • 2021
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced β-amyloid (Aβ) generation and development of AD is not yet known. In this study, we investigated the protective effects of Acorus gramineus Soland. (AGS) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced A β production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with AGS significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) and elevation of levels of malondialdehyde, nitrite (NO), prostaglandin E2 (PGE2), cytokines (TNF-α, IL-1β and IL-6) and glutathione, as well as superoxide dismutase activity. AGS also reduced OGD/R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, AGS reduced OGD/R-induced Aβ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that AGS may prevent neuronal cell damage from OGD/R-induced toxicity.

  • PDF