• Title/Summary/Keyword: hypothalamic nucleus

Search Result 51, Processing Time 0.036 seconds

Changes in Neuropeptide Y-Immunoreactive Cells in the Hypothalamus and Cajal Interstitial Cells in the Small Intestine of Rats with High-Fat Diet (고지방식이에 의한 흰쥐의 시상하부 Neuropeptide Y-면역반응 신경세포와 장내 Cajal 세포의 변화)

  • Moon, Ji-Young;Moon, Kyung-Rae;Park, Sang-Kee;Chung, Yoon-Young;Kim, Eun-Young
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.14 no.2
    • /
    • pp.171-180
    • /
    • 2011
  • Purpose: The aim of this study was to assess changes in neuropeptide Y (NPY) immunoreactivity in the hypothalamus and interstitial cells of Cajal (ICC) in the small intestine of rats fed high-fat diets (HFD). Methods: Male Sprague-Dawley rats (200~250 g body weight) were randomly divided into two groups, which were the control group (normal chow diet for 6 weeks), and the HFD group (rodent diet with 60% kcal fat for 6 weeks). The immunoreactivity of NPY in the hypothalamus and ICC in the small intestine was evaluated after every feed for 6 weeks. Results: NPY immunoreactivity was observed strongly in the hypothalamic nuclei in the HFD group compared to the control group. The numbers of NPY-immunoreactive (IR) cells were significantly higher in the paraventricular hypothalamic nucleus in the HFD group than in the control group. In the region of Auerbach's plexus (AP) of small intestine, the staining intensity of the ICC-IR cells was reduced in the HFD group compared to the control group. The numbers of ICC in the small intestine with HFD, including ICC in the inner circular and outer longitudinal muscle were significantly lower than in the control group. Conclusion: This study suggested that increasing NPY-IR cells in the hypothalamus may reflect resistance of NPY action after a HFD, and decreasing ICC-IR cells in the small intestine after a HFD is functionally significant in gastrointestinal motility.

Neuroendocrine Control of Gonadotropin Secretion during the Menstrual Cycle

  • Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.57-75
    • /
    • 1987
  • Two modalities of gonadotropin secretion, pulsatile gonadotropin and preovulatory gonadotropin surge, have been identified in the mammals. Pulsatile gonadotropin secretion is modulated by the pulsatile pattern of GnRH release and complex ovarian steroid feedback actions. The neural mechansim that regulates the pulsatile release of GnRH in the hypothalamus is called "GnRH pulse generator". Ovarian steroids, estradiol and progesterone, appear to exert thier feedback effects both directly on the pituitary to modulate gonadotropin release and on a hypothalamic site to modulate GnRH release; estradiol primarily affects the amplitude while progesterone decreases the frequency of the pulsatile GnRH. Steroid hormones are known to affect catecholamine transmission in brain. MBH-POA is richly innervated by NE systems and close apposition of NE terminals and GnRH cell bodies occurs in the MBH as well as in the POA. NE normally facilitates pulsatile LH release by acting through ${\alpha}-receptor$ mechanism. However, precise nature of facilitative role of NE transmission in maintaining pulsatile LH has not been clearly understood. Close apposition of DA and GnRH terminals in ME might permit DA to influence GnRH release. Action of DA transmission probably is mediated by axo-axonic contacts between GnRH and DA fibers in the ME. Dopamine transmission does not normally regulate pulsatile LH release, but under certain conditions, increased DA transmission inhibit LH pulse. Endogenous opioid acts to suppress the secretion of GnRH into hypophysial portal circulation, thereby inhibiting gonadotropin secretion. However, an interaction between endogenenous opioid peptides and gonadotropin release is a complex one which involves ovarian hormones as well. LH secretion appears to be most suppressed by endogenenous opioids during the luteal phase, at a time of elevated progesterone secretion. The arcuate nucleus contains not only cell bodies for GnRH and ${\beta}-endorphin$ but also a dense aborization of fibers suggesting that GnRH release is changed by the interactions between GnRH and ${\beta}-endorphin$ cell bodies within the arcuate nucleus. The frequency and amplitude of pulsatile LH release seem to be increased during the preovulatory gonadotropin surge. Estradiol exerts positive feedback action on the hypothalamo-pituitary axis to trigger preovulatory LH surge. GnRH is also crucial hormonal stimulus for preovulatory LH surge. It is unlikely, however, that increased secretion of GnRH during the preovulatory gonadotropin surge represents an obligatory neural signal for generation of the LH discharge in primates including human. Modulation of preovulatory LH surge by catecholamines has been studied almost exclusively in rats. NE and E may be involved in distinct way to accumulate GnRH in the MBH and its release into the hypophysial portal system during the critical period for LH surge on proestrus in rats. However, the mechanisms whereby augmented adrenergic transmission may facilitate the formation and accumulation of GnRH in the ME-ARC nerve terminals before the LH surge have not been clearly understood.

  • PDF

Effects of Salvianolic Acid B Against Oxidative Stress in Skeletal Muscle and Brain Tissue following Exhaustive Exercise in Rats (Salvianolic acid B가 고강도 운동부하에 의한 흰쥐 골격근과 뇌조직의 Oxidative Stress에 미치는 영향)

  • Lee, Hyun-Joon;Kang, Sung-Han;Kweon, Su-Hyeon;Kim, Dae-Kyung;Kim, Jeeho;Moon, Ji-Hong;Shin, Jung-Won;Lee, Jong-Soo;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.99-106
    • /
    • 2016
  • Objectives : Salvianolic acid B (SAB) is an active ingredient in Salvia miltiorrhiza frequently used for cardiovascular and cerebrovascular diseases. The present study investigated the antioxidant effects of SAB on the skeletal muscle and the brain tissue of rats following exhaustive exercise.Methods : The rats were treated with oral administration of SAB (30 mg/kg) daily for 5 days prior to the exhaustive exercise. The exhaustive exercise was performed as swimming for 150 min with 5% body weight attached to the tail on the 5th day. The antioxidant effects of SAB was evaluated by measuring the superoxide generation in the gastrocnemius and the 4-HNE expression in the hippocampal tissue. In addition, c-Fos-expressing cells in the brain tissue was observed using immunohistochemistry.Results : Histological features and muscle fiber type composition were not different between the SAB group and the exhaustive exercise group. SAB significantly reduced the upregulation of superoxide generation in the muscle tissue. SAB significantly reduced the increase of c-Fos-expressing cells in the cerebral cortex, paraventricular thalamic nucleus, dorsomedial hypothalamic nucleus, the CA1, CA3, and DG regions of hippocampus. SAB significantly reduced the upregulation of 4-HNE expression in the CA1 and DG regions of hippocampus caused by the exhaustive exercise.Conclusions : The results suggest that SAB exerts antioxidative effect against oxidative stress in the skeletal muscle and the brain tissue following exhaustive exercise, while SAB may has an anti-stress effect on stress responses in the brain.

Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus) on High Fat Diet-induced Obesity in Rats (지방식이로 유도된 비만동물모델에서의 약침의 효과)

  • Kim, Ji-Hyun;Park, Chang-Shin;Hahm, Dae-Hyun;Lee, Hye-Jung;Shim, In-Sop
    • Journal of Pharmacopuncture
    • /
    • v.7 no.1 s.12
    • /
    • pp.5-14
    • /
    • 2004
  • Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the antiobesity effects of herbal acupuncture(HA) with Sang-hwang(phellinus linteus) at Fuai(SP16) were investigated in the rat fed on high-fat(HF) diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley(4-wk-old) rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio(FER), body fat mass, plasma nitric oxide(NO) were investigated in rats fed on normal diet, HF diet, and HF diet with HA(HF-diet-HA) groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y(NPY) and the anorectic peptide cholecystokinin(CCK) were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus(ARC), and CCK was increased in the paraventricular nucleus(PVN) after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF dietinduced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

The Effects of Acupuncture on Alleviating Pain and Depression and Modulating Brain Neural Activity (침 치료의 통증 및 우울증 개선 효과와 뇌신경 반응성 조절 기전 연구)

  • Keun Hyang Eom;Seul-Ki Won;Ji-Hye Song;Ji-Yeun Park
    • Korean Journal of Acupuncture
    • /
    • v.41 no.3
    • /
    • pp.79-89
    • /
    • 2024
  • Objectives : We aimed to identify the effects of acupuncture treatment on alleviating pain and depression and modulating brain neural activity in the neuropathic pain and depression comorbidity mouse model (PDCM). Methods : We performed partial sciatic nerve ligation on the right hind paw of mice to induce neuropathic pain and injected reserpine (2 mg/kg, intraperitoneal) for 10 days from the day of the surgery to induce pain and depression. Acupuncture treatment was performed for 10 days at the following locations: 1) ST36 and SP6 (Joksamni and Sameumgyo; JS), 2) KI1 and HT7 (Yongcheon and Sinmun; YS), 3) LR1, PC9, KI10, and PC3 (Pericardium tonification; PT), or 4) LR1, HT9, KI10, and HT3 (Heart tonification; HT). Pain-like behavior was measured using the von Frey test and depressive-like behavior was assessed using the open field test. Then, the c-Fos expression was analyzed in the brain regions of neocortex, striatum, hypothalamus, hippocampus, midbrain, and medulla to examine brain neural activity. Results : In PDCM, pain-like behavior was alleviated by acupuncture treatment on the JS, YS, PT, and HT, and depressive-like behavior was improved by acupuncture treatment on the JS and YS. JS and YS were derived as an optimized acupoint combination for improving neuropathic pain and depression comorbidity. Brain neural activities in the neocortex (infralimbic cortex) and hypothalamus (paraventricular hypothalamic nucleus; PVN) were commonly altered by both JS and YS acupuncture treatments. In addition, neural activities in the neocortex (prelimbic cortex; PrL) and midbrain (substantia nigra, lateral part of the dorsal raphe nucleus) were altered exclusively by JS acupuncture treatment, while changes in the area 2 of the anterior cingulate cortex and the cornu ammonis 3 of the hippocampus were specific to YS acupuncture treatment. Brain neural activity in the PrL and PVN regions was significantly correlated with changes in pain behavior. Conclusions : Both JS and YS acupuncture treatments alleviated pain and depressive-like behaviors, which were associated with modulation of neural activities in the neocortex, hypothalamus, hippocampus, and midbrain.

The Characteristics of Supramammillary Cells Projecting to the Hippocampus in Stress Response in the Rat

  • Choi, Woong-Ki;Wirtshafter, David;Park, Hyun-Jung;Lee, Mi-Sook;Her, Song;Shim, In-Sop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • The hypothalamus-pituitary-adrenocortex (HPA) axis is the central mediator of the stress response. The supramammillary (SuM) region is relatively unique among the hypothalamic structures in that it sends a large, direct projection to the hippocampal formation. It has been shown that mild stress could activate the SuM cells that project to the hippocampus. However, the role of these cell populations in modulating the stress response is not known. The present study examined the effect of stress on different populations of SuM cells that project to the hippocampus by injecting the fluorescent retrograde tracer, fluorogold (FG), into the hippocampus and utilizing the immunohistochemistry of choline acetyltransferase (ChAT), corticotrophin releasing factor (CRF), serotonin (5-HT), glutamate decarboxylase (GAD), tyrosine hydroxylase (TH) and NADPH-d reactivity. Immobilization (IMO) stress (2 hr) produced an increase in the expression of ChAT- immunoreactivity, and tended to increase in CRF, 5-HT, GAD, TH-immunoreactivity and nitric oxide (NO)-reactivity in the SuM cells. Fifty-three percent of 5-HT, 31% of ChAT and 56% of CRF cells were double stained with retrograde cells from the hippocampus. By contrast, a few retrogradely labeled cells projecting to the hippocampus were immunoreactive for dopamine, ${\gamma}$-aminobutyric acid (GABA) and NO. These results suggest that the SuM region contains distinct cell populations that differentially respond to stress. In addition, the findings suggest that serotonergic, cholinergic and corticotropin releasing cells projecting to the hippocampus within the SuM nucleus may play an important role in modulating stress-related behaviors.

The Effect of Ghrelin on $Ca^{2+}$ Concentration in Thyroid FRTL-5 Cells

  • Kim, Byung-Joo;Park, Young-Joo;Park, Do-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.195-200
    • /
    • 2004
  • Ghrelin is a newly discovered peptide, which is released from the stomach and neurons in the hypothalamic arcuate nucleus (ARC), and potently stimulates growth hormone release and food intake. In the present study, we investigated the effect of ghrelin on $[Ca^{2+}]_i$ in thyroid FRTL-5 cells. Ghrelin (5 nM) increased $[Ca^{2+}]_i$ and TSH (1 unit/l) had an additive effect on $[Ca^{2+}]_i$ when extracellular normal solution was 1.1mM $Ca^{2+}$ containing Coon's modified Ham's F12 medium. When $Ca^{2+}-free$ medium containing 2 mM EGTA replaced the above normal solution, ghrelin also induced a similar rise in $[Ca^{2+}]_i$. In the middle of $[Ca^{2+}]_i$ increment by ghrelin, nifedipine $(1\;{\mu}M)$, nickel $(100\;{\mu}M)$ and $La^{3+}\;(100\;{\mu}M)$ had no effect on $[Ca^{2+}]_i$. After endoplasmic reticulum was depleted by cyclopiazonic acid $(CPA;10\;{\mu}M)$, ghrelin caused no visible change on $[Ca^{2+}]_i$ in $Ca^{2+}-free$/2 mM EGTA solution. These results suggest that ghrelin can increase $[Ca^{2+}]_i$ through endoplasmic reticulum in thyroid FRTL-5 cells.

Induction of Two Mammalian PER Proteins is Insufficient to Cause Phase Shifting of the Peripheral Circadian Clock

  • Lee, Joon-Woo;Cho, Sang-Gil;Cho, Jun-Hyung;Kim, Han-Gyu;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.153-160
    • /
    • 2005
  • Most living organisms exhibit the circadian rhythm in their physiology and behavior. Recent identification of several clock genes in mammals has led to the molecular understanding of how these components generate and maintain the circadian rhythm. Many reports have implicated the photic induction of either mPer1 or mPer2 in the hypothalamic region called the suprachiasmatic nucleus (SCN) to phase shift the brain clock. It is now established that peripheral tissues other than the brain also express these clock genes and that the clock machinery in these tissues work in a similar way to the SCN clock. To determine the role of the two canonical clock genes, mPer1 and mPer2, in the peripheral clock shift, stable HEK293EcR cell lines that can be induced and stably express these proteins were prepared. By regulating the expression of these proteins, it could be shown that induction of the clock genes, either mPer1 or mPer2 alone is not sufficient to cause clock phase shifting in these cells. Our real-time PCR analysis on these cells indicates that the induction of mPER proteins dampens the expression of the clock-specific transcription factor mBmal1. Altogether, our present data suggest that mPer1 and mPer2 may not function in clock shift or take part in differential roles on the peripheral circadian clock.

Effect of acupuncture treatment on carrageenan-induced inflammation and NADPH-diaphorase reactivity in the hypothalamus of Stat4 knockout mice (Carrageenan 염증 유도된 Stat 4 유전자 제거생쥐의 시상하부에서 NADPH-diaphorase 반응에 대한 침의 영향)

  • Hong, Mee-Suk;Kim, Mi-Ja;Kim, Jin-Ju;Park, Hi-Joon;Chung, Joo-Ho
    • Korean Journal of Acupuncture
    • /
    • v.24 no.4
    • /
    • pp.221-231
    • /
    • 2007
  • 목 적 : 본 연구의 목적은 시상하부에서 침처치에 대한 nitric oxide synthase (NOS)발현을 nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)를 이용한 조직화학 염색법으로 관찰하였다. 실험방법 : 동물은 Balb/c (wild type) 와 Stat 4 knockout (KO) 생쥐를 사용하였다. 염증유도는 1% carrageenan 용액 (20ul/마리)을 발 뒤꿈치 표피에 주사하였고, 침 처치는 족삼리 (ST36)에 시침하였다. 침 처치 후 5시간까지 부종율을 부종측정기로 측정하였으며, 마지막으로 부종을 측정한 후 동물을 희생하여 뇌를 적출하여 고정하였다. 침에 대한 효과를 확인하기 위하여 NADPH-d 반응의 조직염색을 실시하였다. 염증유도와 그룹간의 유의성 검증은 one-way ANOVA를 사용하였다. 결 과 : 대조군인 Balb/c와 실험군인 stat4 KO 생쥐를 carrageenan으로 염증을 유도시에 대조군은 90%이상 유도된 반면, Stat4 KO 그룹은 50% 정도의 염증만이 유도되었다. 염증을 유도한 생쥐의 족삼리에 침 처치시 대조군은 1시간에서 약 40%정도 감소하였고 (P<0.05), Stat4 KO 실험군은 유의한 염증 감소율을 보이지 않았다. 시상하부의 lateral hypothalamic area (LHA)와 paraventricular nucleus (PVN)부위의 침에 대한 효과를 NADPH-d 에 양성으로 반응하는 세포수로 비교하여 다음과 같은 결과를 얻었다. (1) 대조군에서 염증 유도시 시상하부의 PVN는 NADPH-d 양성세포수가 감소하였고, LHA에서는 증가하였다. (2) 염증을 유도한 대조군에 침을 처치시 PVN은 세포수가 증가하였고, LHA에서는 감소하는 경향을 보였다. (3) 염증을 유도한 Stat4 KO 군에서는 시상하부의 PVN과 LHA부위 모두에서 NADPH-d 양성세포수가 감소하였고, 염증유도그룹에 침을 처치시 PVN과 LHA부위 모두에서 세포수가 증가함을 관찰 할 수 있었다. (4) 대조군과 실험군 모두에 salicylic acid로 비교하였더니 염증유도 효과 및 NADPH-d 세포 수에서 침 처치와 비슷한 결과를 나타내었다. 결 론 : 침은 염증을 유도한 생쥐에서 염증 감소에 유의한 효과가 있다. 염증을 유도한 Balb/c 와 Stat4 KO 생쥐에 침을 처치 시 시상하부의 NADPH-d 발현이 LHA부위와 PVN에서 서로 다르게 나타나는 것으로 나타난다. 이러한 현상은 침 효과가 시상하부의 위치에 대한 작용이 다르기 때문이라고 생각된다.

  • PDF

Rhythmic Control and Physiological Functional Significance of Melatonin Production in Circadian Rhythm (주기적 리듬 조절에 의한 멜라토닌 생산과 생리적 기능의 중요성)

  • Kim, Min Gyun;Park, Seul Ki;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1064-1072
    • /
    • 2013
  • Circadian rhythm is controlled by hormonal oscillations governing the physiology of all living organisms. In mammals, the main function of the pineal gland is to transform the circadian rhythm generated in the hypothalamic suprachiasmatic nucleus into rhythmic signals of circulating melatonin characterized by a largely nocturnal increase that closely reflects the duration of night time. The pineal gland has lost direct photosensitivity, but responds to light via multi-synaptic pathways that include a subset of retinal ganglion cells. Rhythmic control is achieved through a tight coupling between environmental lighting and arylalkylamine-N-acetyltransferase (AANAT) expression, which is the rhythm-controlling enzyme in melatonin synthesis. Previous studies on the nocturnal expression of AANAT protein have described transcriptional, post-transcriptional, and post-translational regulatory mechanisms. Molecular mechanisms for dependent AANAT expression provide novel aspects for melatonin's circadian rhythmicity. Extensive animal research has linked pineal melatonin for the expression of seasonal rhythmicity in many mammalian species to the modulation of circadian rhythms and to sleep regulation. It has value in treating various circadian rhythm disorders, such as jet lag or shift-work sleep disorders. Melatonin, also, in a broad range of effects with a significant regulation influences many of the body's physiological functions. In addition, this hormone is known to influence reproductive, cardiovascular, and immunological regulation as well as psychiatric disorders.