• Title/Summary/Keyword: hypoplasticity

Search Result 3, Processing Time 0.018 seconds

Sand Behavior in Casting Mold Fabrication (주형제작과정에서의 주물사 거동)

  • 최우천;신평균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.164-170
    • /
    • 2000
  • Important factors in a casting mold are strength at the mold surface and gas permeability of the mold. This study investigates the effects of pre-pressure and sand particle hardness on gas permeability, with a constraint that the norm of a stiffness array at the mold surface should be higher than a certain value. The constitutive relation is obtained using a hypoplasticity model. This study is firstly attempted to investigate sand behavior in mold fabrication, and will give a theoretical base for fabricating better molds.

  • PDF

Behaviour of interfacial layer along granular soil-structure interfaces

  • Huang, Wenxiong;Bauer, Erich;Sloan, Scott W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions

  • Abbasi, Saeed;Ardakani, Alireza;Yakhchalian, Mansoor
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 2021
  • Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.