• Title/Summary/Keyword: hyperspectral image analysis (HSI)

Search Result 5, Processing Time 0.019 seconds

Scientific Examination of Kim Jeong-hee's "Buliseonrando" by Using Hyperspectral Image Analysis (초분광영상 분석을 활용한 김정희 필 불이선란도(不二禪蘭圖)의 과학적 조사)

  • Ko Soorin;Park Jinho;Lee Sujin
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.127-144
    • /
    • 2023
  • "Buliseonrando," meaning "Buddhist virtues and the orchid are one and the same," was painted by Chusa Kim Jeong-hee. Four appreciation sentences are written in various fonts around the orchid drawn in the center of the painting, along with a total of 15 seals stamped. Hyperspectral image analysis(HSI), microscopy, and X-ray fluorescence (XRF) were conducted with a focus on the seals and the parts of the painting that have been applied with a conservation treatment. As a result of the analyses, the seals were classified into two types-seals with or without barium content. Stamp shade was identified only in five of themstamps, which allows the assumption that the composition and material characteristics of the stamp inks varied depending on the period. In particular, hyperspectral image analysis confirms traces of conservation treatment on the seals and the lost parts identified in addition to the 15 seals, which also demonstrates the utility of hyperspectral image analysis.

Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Kim, Geonwoo;Park, Eunsoo;Joshi, Rahul;Lohumi, Santosh;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.995-1010
    • /
    • 2020
  • In this study, a multivariate analysis model of partial least square regression (PLSR) was developed to predict the moisture content of green peppers using hyperspectral imaging (HSI). In HSI, illumination is essential for high-quality image acquisition and directly affects the analytical performance of the visible near-infrared hyperspectral imaging (VIS/NIR-HSI) system. When green pepper images were acquired using a direct lighting system, the specular reflection from the surface of the objects and their intensities fluctuated with time. The images include artifacts on the surface of the materials, thereby increasing the variability of data and affecting the obtained accuracy by generating false-positive results. Therefore, images without glare on the surface of the green peppers were created using a polarization filter at the front of the camera lens and by exposing the polarizer sheet at the front of the lighting systems simultaneously. The results obtained from the PLSR analysis yielded a high determination coefficient of 0.89 value. The regression coefficients yielded by the best PLSR model were further developed for moisture content mapping in green peppers based on the selected wavelengths. Accordingly, the polarization filter helped achieve an uniform illumination and the removal of gloss and artifact glare from the green pepper images. These results demonstrate that the HSI technique with a polarized lighting system combined with chemometrics can be effectively used for high-throughput prediction of moisture content and image-based visualization.

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

Development of Non-Destructive Sorting Technique for Viability of Watermelon Seed by Using Hyperspectral Image Processing (초분광 영상기술을 이용한 수박종자 발아여부 비파괴 선별기술 개발)

  • Bae, Hyungjin;Seo, Young-Wook;Kim, Dae-Yong;Lohumi, Santosh;Park, Eunsoo;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • Seed viability is one of the most important parameters that is directly related with seed germination performance and seedling emergence. In this study, a hyperspectral imaging (HSI) system having a range of 1000-2500 nm was used to classify viable watermelon seeds from nonviable seeds. In order to obtain nonviable watermelon seeds, a total of 96 seeds were artificially aged by immersing the seeds in hot water ($25^{\circ}C$) for 15 days. Further, hyperspectral images for 192 seeds (96 normal and 96 aged) were acquired using the developed HSI system. A germination test was performed for all the 192 seeds in order to confirm their viability. Spectral data from the hyperspectral images of the seeds were extracted by selecting pixels from the region of interest. Each seed spectrum was averaged and preprocessed to develop a classification model of partial least square discriminant analysis (PLS-DA). The developed PLS-DA model showed a classification accuracy of 94.7% for the calibration set, and 84.2% for the validation set. The results demonstrate that the proposed technique can classify viable and nonviable watermelon seeds with a reasonable accuracy, and can be further converted into an online sorting system for rapid and nondestructive classification of watermelon seeds with regard to viability.

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.