• Title/Summary/Keyword: hypersaline

Search Result 20, Processing Time 0.025 seconds

Microbial Community Analysis in the Wastewater Treatment of Hypersaline-Wastewater (고농도 염분폐수의 정화능이 우수한 기능성 미생물 커뮤니티의 군집 분석)

  • Lee, Jae-Won;Kim, Byung-Hyuk;Park, Yong-Seok;Song, Young-Chae;Koh, Sung-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.377-385
    • /
    • 2014
  • In this study, a wastewater treatment system for hypersaline wastewater utilizing the Hypersaline Wastewater Treatment Community (HWTC) has been developed. The hypersaline wastewater treatment efficiency and microbial community of the HWTC were investigated. The average removal efficiencies of chemical oxygen demand were 84% in an HRT of 2.5 days. Microbial community analysis, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments and 16S rRNA gene clone library, revealed community diversity. The 16S rRNA gene analysis of dominant microbial bacteria in 4% hypersaline wastewater confirmed the presence of Halomonas sp. and Paenibacillus sp. Phylogenetic analysis suggested that the taxonomic affiliation of the dominant species in the HWTC was ${\gamma}$-proteobacteria and firmicutes. These results indicate the possibility that an appropriate hypersaline wastewater treatment system can be designed using acclimated sludge with a halophilic community.

Ecology of Algal Mats from Hypersaline Ponds in the British Virgin Islands

  • Jarecki, Lianna;Sarah M. , Burton-MacLeod;Garbary, David J.
    • ALGAE
    • /
    • v.21 no.2
    • /
    • pp.235-243
    • /
    • 2006
  • Benthic sediment samples ranging from poorly aggregated sand to complex, stratified mats were collected from six hypersaline ponds from March and July 1995 in the British Virgin Islands. Assemblages were analyzed with respect to species composition and abundance within visibly distinct layers in each mat sample. In individual ponds there was no apparent association between changing depth and the development of the benthic mats. Some species were present in all samples (e.g. Oscillatoria sp.) while others were restricted to single sites (e.g. Johannesbaptistia pellucida). Primary species included Microcoleus chthonoplastes, Phormidium spp., Coccochloris stagnina, and purple sulfur bacteria. Quantitative analysis of community structure included cluster and principal component analysis. Samples from individual ponds were often clustered; however, this was subject to seasonal variation. Mats collected in March were generally thicker and contained more layers than those in July. Variation among sites was not explained by the measured variation in environmental factors such as average pond salinity, depth, and oxygen concentration (mg/L). This study provides a detailed analysis of mat communities in hypersaline ponds and compares them with similar mat communities from other areas.

Diversity of Halophilic Archaea From Six Hypersaline Environments in Turkey

  • Ozcan, Birgul;Ozcengiz, Gulay;Coleri, Arzu;Cokmus, Cumhur
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.985-992
    • /
    • 2007
  • The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.

Physiological responses to salt stress by native and introduced red algae in New Zealand

  • Gambichler, Vanessa;Zuccarello, Giuseppe C.;Karsten, Ulf
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.137-146
    • /
    • 2021
  • Intertidal macroalgae are regularly exposed to hypo- or hypersaline conditions which are stressful. However, red algae in New Zealand are generally poorly studied in terms of salinity tolerance. Consequently, two native (Bostrychia arbuscula W. H. Harvey [Ceramiales], Champia novae-zelandiae [J. D. Hooker & Harvey] Harvey [Rhodymeniales]) and one introduced red algal taxon (Schizymenia spp. J. Agardh [Nemastomatales]) were exposed for 5 days in a controlled salt stress experiment to investigate photosynthetic activity and osmotic acclimation. The photosynthetic activity of B. arbuscula was not affected by salinity, as reflected in an almost unchanged maximum quantum yield (Fv/Fm). In contrast, the Fv/Fm of C. novae-zelandiae and Schizymenia spp. strongly decreased under hypo- and hypersaline conditions. Treatment with different salinities led to an increase of the total organic osmolyte concentrations with rising salt stress in B. arbuscula and Schizymenia spp. In C. novae-zelandiae the highest organic osmolyte concentrations were recorded at SA 38, followed by declining amounts with further hypersaline exposure. In B. arbuscula, sorbitol was the main organic osmolyte, while the other taxa contained floridoside. The data presented indicate that all three red algal species conspicuously differ in their salt tolerance. The upper intertidal B. arbuscula exhibited a wide salinity tolerance as reflected by unaffected photosynthetic parameters and strong sorbitol accumulation under increasing salinities, and hence can be characterized as euryhaline. In contrast, the introduced Schizymenia spp. and native C. novae-zelandiae, which preferentially occur in the mid-intertidal, showed a narrower salinity tolerance. The species-specific responses reflect their respective vertical positions in the intertidal zone.

Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea

  • Bae, Hanna;Park, Jinsoon;Ahn, Hyojin;Khim, Jong Seong
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.361-373
    • /
    • 2020
  • The community dynamics of benthic diatoms in the hypersaline environment are investigated to advance our understanding how salinity impacts marine life. Diatoms were sampled in the two salterns encompassing salt Ponds, ditches, and seawater reservoirs (n = 11), along the salinity gradient (max = 324 psu), and nearby tidal flats (n = 2). The floral assemblages and distributions across sites and stations showed great variations, with a total of 169 identified taxa. First, not surprisingly, higher diversity of benthic diatoms was found at natural tidal flats than salterns. The saltern diatoms generally showed salinity dependent distributions with distinct spatial changes in species composition and dominant taxa. Biota-environment and principal component analysis confirmed that salinity, mud content, and total nitrogen were key factors influencing the overall benthic community structure. Some dominant species, e.g., Nitzschia scalpelliformis and Achnanthes sp. 1, showed salinity tolerance / preference. The number of diatom species at salinity of >100 psu reduced over half and no diatoms were found at maximum salinity of 324 psu. The highest salinity for the observed live diatoms was 205 psu, however, a simple regression indicated a theoretical salinity threshold of ~300 psu on the survival. Finally, the indicator species were identified along the salinity gradient in salterns as well as natural tidal flats. Overall, high species numbers, varying taxa, and euryhaline distributions of saltern diatoms collectively reflected a dynamic saltern ecosystem. The present study would provide backgrounds for biodiversity monitoring of ecologically important microalgal producers in some unique hypersaline environment, and elsewhere.

Environmental Impacts of Brine from the Seawater Desalination Plants (해수담수화 시설에서 생성된 농축수의 환경적 영향)

  • Park, Seonyoung;Seo, Jinsung;Kim, Taeyun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2018
  • The need for seawater desalination is increasing in terms of securing various water resources, but few studies are available as for the environmental impact of hypersaline concentrated water (brine) discharged from desalination plants. Domestic studies are concentrated mainly on toxicity evaluation that phytoplankton, zooplankton larvae and green algae (Ulva pertusa) are negatively affected by concentrated water. The mortality of Paralichthys olivaceus showed a linear relationship with increasing salinity, and Oryzias latipes died 100% at concentrations above 60 psu. Foreign studies included monitoring cases as well as toxicity evaluations. The number of species decreased around the area where the concentrated water discharged. The hypersaline concentrated water affects the pelagic and benthic organisms. However, the fishes escaped when exposed to salinity, and the pelagic and benthic organisms resistant to salinity survived the hypersaline environment. The salinity limit and distance from the outlet was presented as the regulatory standard for bine discharge. There were differences in regulatory standards among country and seawater desalination plants, and these regulatory standards have been strengthened recently. In particular, California Water Boards were revised to ensure that the maximum daily salinity concentration does not exceed 2 psu above the ambient salinity level within 100 m of the outlet.

The post-embryonic developments of Pseudodiaptomus koreanus Soh and Suh(Copepoda, Calanoida)

  • Moon, Seung-Yong;Soh, Ho-Young;Park, Sang-Duk
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.270-271
    • /
    • 2003
  • The genus of Pseudodiaptomus Herrick, 1884 presently comprises 74 species worldwide extending freshwater to hypersaline water(Walter, 2002). Of these, the post-embryonic developments of their naupliar and copepodid stages have been reported in only eight species: P euryhalinus, P. cornatus, P. richardi inequalis, P. marinus, P. binghami, P. poplesia, P. aurivilli and P. hessei. (omitted)

  • PDF

Ecotypic Variation in Salinity Responses of Ulva pertusa(Chlorophyta) from the Korean Coast

  • Kim, Kwang-Young;Suh, Hae-Lip
    • Journal of the korean society of oceanography
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • Salinity ecotypes in Ulva pertusa Kjellman were examined for the growth responses of the three isolates taken from different salinity regimes. All isolates showed a broad salinity tolerance, but growth patterns were correlated with the salinity regime of their original habitat. The germlings from Anin exhibited optimum growth at the native salinity of 32%. The germlings from Yongyon which had hypersaline habitats were tolerable to high salinity, i.e. growth rates peaked at 40%, whereas those from Samgando which had low salinities achieved maximum growth rate at 24\%. The germlings of inter-isolate cross demonstrated intermediate growth response between that of their respective parents. Our data also clearly indicated intraspecific differences among the three isolates, which was interpreted as development of different physiological ecotypes. We conclude that U. pertusa may consist of several ecotypes, each of which has some capacity for physiological adaptation to salinity variations.

  • PDF

Bioactive secondary metabolites produced by fungi

  • Shim, Sang Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.49-49
    • /
    • 2018
  • A variety of bioactive secondary metabolites have been reported from plant-associated microorganisms. Halophytes, plants that can only grow in hypersaline area, were reported to host beneficial microorganisms such as plant growth-promoting endophytes. The microorganisms have been reported to show notable mutualistic symbiosis with halophytes to help them survive in high saline condition. Finding out bioactive secondary metabolites as well as elucidation of relationship(s) between microbes and the host halophyte has been paid attention, because of their functional diversity. Novel microbes often have associated with novel natural products. In an effort to investigate natural compounds with interesting structures from fungi, we selected plants from a distinct environmental setting which could be a promising source. Several fungi were isolated from halophyte or medicinal plants. Some strains of the fungi were cultivated on a large scale and extracted with ethyl acetate, which were subjected to a series of chromatographic methods, leading to the isolation of tens of compounds. The isolated compounds were identified by analysis of spectroscopic methods such as 1D-, 2D-NMR, and MS. Details of isolation, structure determination, and biological activities will be discussed.

  • PDF