• Title/Summary/Keyword: hyperidentities

Search Result 3, Processing Time 0.015 seconds

Strongly Solid Varieties and Free Generalized Clones

  • Denecke, Klaus
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • Clones are sets of operations which are closed under composition and contain all projections. Identities of clones of term operations of a given algebra correspond to hyperidentities of this algebra, i.e., to identities which are satisfied after any replacements of fundamental operations by derived operations ([7]). If any identity of an algebra is satisfied as a hyperidentity, the algebra is called solid ([3]). Solid algebras correspond to free clones. These connections will be extended to so-called generalized clones, to strong hyperidentities and to strongly solid varieties. On the basis of a generalized superposition operation for terms we generalize the concept of a unitary Menger algebra of finite rank ([6]) to unitary Menger algebras with infinitely many nullary operations and prove that strong hyperidentities correspond to identities in free unitary Menger algebras with infinitely many nullary operations.

  • PDF

HYPERIDENTITIES IN (xy)x ≈x(yy) GRAPH ALGEBRAS OF TYPE (2,0)

  • Khampakdee, Jeeranunt;Poomsa-Ard, Tiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.651-661
    • /
    • 2007
  • Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity $s{\approx}t$ if the corresponding graph algebra $\underline{A(G)}$ satisfies $s{\approx}t$. A graph G=(V,E) is called an $(xy)x{\approx}x(yy)$ graph if the graph algebra $\underline{A(G)}$ satisfies the equation $(xy)x{\approx}x(yy)$. An identity $s{\approx}t$ of terms s and t of any type ${\tau}$ is called a hyperidentity of an algebra $\underline{A}$ if whenever the operation symbols occurring in s and t are replaced by any term operations of $\underline{A}$ of the appropriate arity, the resulting identities hold in $\underline{A}$. In this paper we characterize $(xy)x{\approx}x(yy)$ graph algebras, identities and hyperidentities in $(xy)x{\approx}x(yy)$ graph algebras.

The Monoid of Linear Hypersubstitutions

  • Changphas, Thawhat;Pibaljommee, Bundit;Denecke, Klaus
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.617-629
    • /
    • 2019
  • A term is called linear if each variable which occurs in the term, occurs only once. A hypersubstitution is said to be linear if it maps any operation symbol to a linear term of the same arity. Linear hypersubstitutions have some importance in Theoretical Computer Science since they preserve recognizability [7]. We show that the collection of all linear hypersubstitutions forms a monoid. Linear hypersubstitutions are used to define linear hyperidentities. The set of all linear term operations of a given algebra forms with respect to certain superposition operations a function algebra. Hypersubstitutions define endomorphisms on this function algebra.