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HYPERIDENTITIES IN (zy)z ~ z(yy) GRAPH ALGEBRAS
OF TYPE (2,0)

JEERANUNT KHAMPAKDEE AND TIANG POOMSA-ARD

ABSTRACT. Graph algebras establish a connection between directed gra-
phs without multiple edges and special universal algebras of type (2,0).
We say that a graph G satisfies an identity s ~ t if the corresponding
graph algebra A(G) satisfies s &~ t. A graph G = (V,E) is called an
(zy)x ~ x(yy) graph if the graph algebra A(G) satisfies the equation
(zy)z ~ z(yy). An identity s ~ t of terms s and t of any type 7 is
called a hyperidentity of an algebra A if whenever the operation symbols
occurring in s and t are replaced by any term operations of A of the
appropriate arity, the resulting identities hold in A.

In this paper we characterize (zy)r &~ z(yy) graph algebras, identities
and hyperidentities in (zy)x ~ x(yy) graph algebras.

1. Introduction

An identity s = t of terms s,t of any type 7 is called a hyperidentity of an
algebra A if whenever the operation symbols occurring in s and ¢ are replaced
by any term operations of A of the appropriate arity, the resulting identity
holds in A. Hyperidentities can be defined more precisely using the concept of
a hypersubstitution.

We fix a type 7 = (n;)icy, n; > 0 for all ¢ € I, and operation symbols
(fi)ier, where f; is n; — ary. Let W, (X) be the set of all terms of type 7 over
some fixed alphabet X, and let Alg(r) be the class of all algebras of type 7.
Then a mapping

o:{fili e I} — W.(X)
which assigns to every n; — ary operation symbol f; an n; — ary term will be
called a hypersubstitution of type 7 (for short, a hypersubstitution). By & we
denote the extension of the hypersubstitution ¢ to a mapping

G Wo(X) — W (X).
The term 4[] is defined inductively by
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(i) 6[z] = =z for any variable z in the alphabet X, and

(i) 61fi(ts, -+ tn)] = ()W B[], .., tn,])-

Here o(f;)"~(X) on the right hand side of (ii) is the operation induced by o(f;)
on the term algebra with the universe W, (X).

Graph algebras have been invented in [11] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V, E) be a (directed)
graph with the vertex set V and the set of edges E C V x V. Define the graph
algebra A(G) corresponding to G with the underlying set V U {oc}, where
oo is a symbol outside V, and with two basic operations, namely a nullary
operation pointing to co and a binary one denoted by juxtaposition, given for
u,v € VU {0} by

u, i (u,v) €E,
Uv = .
o, otherwise.

Graph identities were characterized in [3] by using the rooted graph of a term
t, where the vertices correspond to the variables occurring in ¢. Since on a
graph algebra we have one nullary and one binary operation, o(f) in this
case is a binary term in W, (X), i.e., a term built up from variables of a two-
element alphabet and a binary operation symbol f corresponding to the binary
operation of the graph algebra.

In [9] R. Pdschel has shown that any term over the class of all graph alge-
bras can be uniquely represented by a normal form term and that there is an
algorithm to construct the normal form term to every given term t.

In [1] K. Denecke and T. Poomsa-ard characterized graph hyperidentities by
using normal form graph hypersubstitutions.

In [6] T. Poomsa-ard characterized associative graph hyperidentities by using
normal form graph hypersubstitutions.

In [7] T. Poomsa-ard, J. Wetweerapong, and C. Samartkoon characterized
idempotent graph hyperidentities by using normal form graph hypersubstitu-
tions.

In [8] T. Poomsa-ard, J. Wetweerapong, and C. Samartkoon characterized
transitive graph hyperidentities by using normal form graph hypersubstitu-
tions.

We say that a graph G = (V,E) is (zy)z = z(yy) if the corresponding
graph algebra A(G) satisfies the equation (zy)z =~ z(yy). In this paper we
characterize (zy)z =~ z(yy) graph algebras, identities and hyperidentities in
(zy)x =~ z(yy) graph algebras.

2. (zy)z =~ z(yy) graph algebras

We begin with one more precise definition of terms of the type of graph
algebras.

Definition 2.1. The set W.(X) of all terms over the alphabet
X ={z1,29,23,...}
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is defined inductively as follows:

(i) every variable z;,i = 1,2,3,..., and oo are terms;

(i) if ¢; and ¢, are terms, then f(t1,%;) is a term, we will shortly write ¢,
for it;

(iii) Wr(X) is the set of all terms which can be obtained from (i) and (ii) in
finitely many steps.

Terms built up from the two-element set Xs = {z1, z2} of variables are thus
binary terms. We denote the set of all binary terms by W, (X3). The leftmost
variable of a term ¢ is denoted by L(¢) and rightmost variable of a term ¢ is
denoted by R(t). A term, in which the symbol oo occurs is called a trivial term.

Definition 2.2. For each non-trivial term ¢ of type 7 = (2,0) one can define
a directed graph G(t) = (V' (¢), E(t)), where the vertex set V(t) is the set of all
variables occurring in ¢ and the edge set E(¢) is defined inductively by

E(t) = gb if ¢ is a variable and E(t1t2) = E(tl) U E(tg) U {(L(tl),L(tg))},
where t = t1t5 is a compound term.

L(t) is called the root of the graph G(t), and the pair (G(t),L(t)) is the

rooted graph corresponding to ¢. Formally, we assign the empty graph ¢ to
every trivial term ¢.

Definition 2.3. We say that a graph G = (V, E) satisfies an identity s ~ ¢
if the corresponding graph algebra A(G) satisfies s & t, i.e., we have s =t for
every assignment V (s)UV (t) = VU{oo}, and in this case, we write G = s ~ t.

Definition 2.4. Let G = (V,E) and G = (V',E') be graphs. A homomor-
phism h from G into G’ is a mapping h: V — V' carrying edges to edges, that
is, for which (u,v) € E implies (h(u), h(v)) € E'.

In [3] it was proved:

Proposition 2.1. Let s and t be non-trivial terms from W.(X) with variables
V(s) = V(t) = {zo,21,...,2n} and L(s) = L(t). Then a graph G = (V,E)
satisfies s = t if and only if the graph algebra A(G) has the following property:

A mapping b : V(s) — V is a homomorphism from G(s) into G if and only
if it is @ homomorphism from G(t) into G.

Proposition 2.1 gives a method to check whether a graph G = (V, E) satisfies
the equation s =~ ¢. Hence, we can check whether a graph G = (V, E) has an
(xy)z =~ z(yy) graph algebra by the following proposition.

Proposition 2.2. Let G = (V, E) be a graph. Then the following are equiva-
lent:

(i) G has an (zy)z ~ z(yy) graph algebra,

(i) (a,b) € E implies (a,a) € E if and only if (b,b) € E.

Proof. Suppose G = (V,E) has an (zy)z ~ z(yy) graph algebra. Let s and
t be terms such that s = (zy)z and t = 2(yy). Let (a,b),{a,a) € E and
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h : V(t) = V be a function such that h(z) = a, h(y) = b. We see that h is
a homomorphism from G(s) into G. By Proposition 2.1, we have that & is a
homomorphism from G(¢) into G. Since (y,y) € E(t), (h(y), h(y)) = (b,b) € E.
Similarly, we prove if (a,b), (b,b) € E, then (a,a) € E.

Conversely, suppose G = (V, E) is a graph which satisfies (ii). Let s and
t be non-trivial terms such that s = (zy)z and ¢t = z(yy). Suppose that
h:V(t) = V is a homomorphism from G(s) into G. Since (z,y), (z,z) € E(s),
we have (h(z), h(y)), (h(z), h(z)) € E. By assumption, we get (h(y), h{y)) € E.
Therefore, h is a homomorphism from G(t) into G. Similarly, we prove that if h
is a homomorphism from G(¢) into G, then it is a homomorphism from G(s) into
G. Hence, by Proposition 2.1, we get that A(G) satisfies (zy)z ~ z(yy). O

From Proposition 2.2, we see that all graphs which have (zy)z ~ z(yy)
graph algebras are the following graphs:

. Q

Gy G> G3 G4 Gs G

and all graphs such that each component of every subgraph induced by at most
two vertices is one of these graphs.

3. Identities in (zy)xz =~ x(yy) graph algebras

Graph identities were characterized in [3] by the following proposition:

Proposition 3.1. A non-trivial equation s ~ t is an identity in the class of
all graph algebras if and only if either both terms s and t are trivial or none of
them is trivial, G(s) = G(t) and L(s) = L(t).

Further it was proved.

Proposition 3.2. Let G = (V, E) be a graph and let h : X U{oo} — VU{o0}
be an evaluation of the variables such that h(co) = co. Consider the canonical
extension of h to the set of all terms. Then there holds: if t is a trivial term
then h(t) = co. Otherwise, if h : G(t) — G is a homomorphism of graphs,
then h(t) = h(L(t)), and if h is not a homomorphism of graphs, then h(t) = cc.

In [6] the following lemma was proved:

Lemma 3.1. Let G = (V,E) be a graph, t a term and
h: X —VU{x}
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an evaluation of the variables. Then:

() If h is a homomorphism from G(t) into G with the property that the
subgraph of G induced by h(V (t)) is complete, then h(t) = h(L(t)).

(ii) If h is a homomorphism from G(t) into G with the property that the
subgraph of G induced by h(V (t)) is disconnected, then h(t) = co.

Now we apply our results to characterize all identities in the class of all
(zy)r ~ x(yy) graph algebras. Clearly, if s and ¢ are trivial, then s ~ ¢ is an
identity in the class of all (zy)z ~ z(yy) graph algebrasand z ~ z (z € X) is an
identity in the class of all (zy)z ~ z(yy) graph algebras, too. So we consider
the case that s and ¢ are non-trivial and different from variables. Then all
identities in the class of all (zy)z =~ z(yy) graph algebras are characterized by
the following theorem:

Theorem 3.1. Let s and ¢ be non-trivial terms and let xo = L(s). Then s ~ t
is an identity in the class of all (zy)x =~ x(yy) graph algebras if and only if the
following conditions are satisfied:

(i) L(s) = L(b),

(i) V(s) =V(2), -

(iii) for any x,y in V(s), z #y, (z,y) € E(s) if and only if (x,y) € E(t),

(iv) there exists © € V(s) such that (z,z) € E(s) if and only if there exists
y € V(t) such that (y,y) € E(¢).

Proof. Suppose that s ~ t is an identity in the class (zy)r ~ z(yy) graph
algebras. Since any complete graph has an (zy)z ~ z(yy) graph algebra, it
follows that L(s) = L(t) and V(s) = V().

Suppose that there exist z,y € V(s) with z # y such that (z,y) € E(s)
but (z,y) ¢ E(t). Consider the graph G = (V, E) such that V = {0,1,2},
E = {(07 0)7 (07 1)7 (1a 1)3 (17 2)7 (2) 1)7 (27 2)5 (27 0)7 (07 2)} Then by Proposition
2.2, A(G) has an (zy)x ~ z(yy) graph algebra. Let h: V(s) = VU{occ} be the
restriction of an evaluation of the variables such that h(y) = 0, h(z) = 1 and
h(w) = 2 for all w € V(s) such that w # = and w # y. We see that h(s) = oo
and h(t) = h(L(t)). Hence, A(G) does not satisfy s ~ t.

Suppose that there exists ¢ € V(s) such that (x,z) € E(s) but there is no
y € V(t) such that (y,y) € E(t). Consider the graph G = (V, E) such that
V =V(t), E = E(t). By Proposition 2.2, A(G) has an (zy)r ~ z(yy) graph
algebra. Let h: V(s) — V be the identity function. We see that h(s) = co and
h(t) = h(L(t)). Hence, A(G) does not satisfy s = t.

Conversely, suppose that s and ¢ are non-trivial terms satisfying (i), (ii), (iii)
and (iv). Let G = (V,E) be an (zy)zr ~ z(yy) graph and let i : V(s) - V
be a mapping. Suppose that h is a homomorphism from G(s) into G and
(z,y) € E(t). If ¢ = y, then (z,z) € E(t). By (iii), there exists z € V(s)
such that (z,2) € E(s). So (h(z),h(z)) € E. By Proposition 2.2, (a,a) € E
for all a € h(V (s)). Hence (h(z),h(z)) € E. If z # y, then by (iii), we have
(z,y) € E(s), thus (h(z),h(y)) € E. Therefore h is a homomorphism from
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G(t) into G. By the same way, if h is a homomorphism from G(t) into G, then
we prove that it is a homomorphism from G(s) into G. By Proposition 2.1, we
get that A(G) satisfies s ~ ¢. U

4. Hyperidentities in (zy)z =~ x(yy) graph algebras

Let K’ be the class of all (zy)r ~ z(yy) graph algebras and let IdK' be the
set of all identities satisfied in the class K'. Now we want to make precise the
concept of a hypersubstitution for graph algebras.

Definition 4.1. A mapping o : {f,00} = W,(X2), where f is the operation
symbol corresponding to the binary operation of a graph algebra, is called a
graph hypersubstitution if o(cc) = oo and o(f) = s € W,(X2). The graph
hypersubstitution with a(f) = s is denoted by o,.

Definition 4.2. An identity s ~ ¢ is an (zy)z =~ x(yy) graph hyperidentity
if and only if for all graph hypersubstitutions o, the equations 6{s] ~ &[t] are
identities in the class K'.

If we want to check that an identity s ~ t is a hyperidentity in the class K’
we can restrict ourselves to a (small) subset of the set of all graph hypersub-
stitutions (we will write HypgG).

In [4] the following relation between hypersubstitutions was defined:

Definition 4.3. Two graph hypersubstitutions 1,02 are called K'-equivalent
if and only if 01(f) =~ o2(f) is an identity in the class K'. In this case we write
g1 ~Kr 09.

In [2] (see also [4]) the following lemma was proved:
Lemma 4.1. If61[s| = 61[t] € IdK' and 01 ~k' 02, then G2[s] = G2[t] € IdK'.

Therefore, it is enough to consider the quotient set HypG/ ~x:.

In [9] it was shown that any non-trivial term ¢ over the class of graph algebras
has a uniquely determined normal form term N F'(¢) and there is an algorithm
to construct the normal form term to a given term ¢. Now, we want to describe
how to construct the normal form term. Let ¢ be a non-trivial term. The normal
form term of t is the term NF(t) constructed by the following algorithm:

(i) Construct G(t) = (V(t), E(¢)).

(ii) Construct for every z € V(t) the list I, = (ziy,...,%i,,) of all out-
neighbors (ie., (z,z;;) € E(t),1 < j < k(z)) ordered by increasing indices
i1 < -+ <ig(e) and let s, be the term (- -- (€24, )%T4,) * - Ty, )-

(iii) Starting with z := L(t), Z := V(t),s := L(t), choose the variable z; €
ZNV (s) with the least index ¢, substitute the first occurrence of z; by the term
$s,, denote the resulting term again by s and put Z := Z \ {z;}. Continue this
procedure while Z # ¢. The resulting term is the normal form NF(t).

The algorithm stops after a finite number of steps, since G(t) is a rooted graph.
Without difficulties one shows G(NF(t)) = G(t), L(NF(t)) = L(t).
In [1] the following definition was given:
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Definition 4.4. The graph hypersubstitution onF() 18 called a normal form

graph hypersubstitution where NF(t) is the normal form of the binary term ¢.

Since for any binary term ¢ the rooted graphs of t and NF(t) are the same,
we have t & NF(t) € IdK'. Then for any graph hypersubstitution o, with

o¢(f) =t € W,(X3), one obtains g, ~ ONF(t)-

In [1] all rooted graphs with at most two vertices were considered. Then we
formed the corresponding binary terms and used the algorithm to construct

normal form terms. The result is given in the following table.

normal form term

graph hypers.

normal form term

graph hypers.

129
2%
(z121)20
z1(za2)
(Z121)(@22)
z1(z2x1)
(z121)(221)
21 ((z221)22)

(z121)((x221)2)

oo

o2

T4

J6

o8

g10

g12

014

J16

J18

L1

121

ToT
(2z1)22

T2 (7171)
(z2(x121))22
xa(z12)

T2 ((z171)22)

(z2(@172)) 72

(z2((z121)72)) 22

o1

o3

05

ar

09

o11

13

J15

o17

J19

By Theorem 3.1, we have the following relations:

(i) O¢~K'08~K/010,
(i) or~kro9~i 011,
(

iii) o14~kr 016~k 018,
(IV) T15~KIO17~K 019,

Let Mk be the set of all normal form graph hypersubstitutions in the class K.
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Then we get
M’C' = {00701502703a04)057067077012701370147015}-

We defined the product of two normal form graph hypersubstitutions in M
as follows.

Definition 4.5. The product o1y oy oan of two normal form graph hypersub-
stitutions is defined by (o1n5 on oon)(f) = NF(G1n[o2n(F)])-

The following table gives the multiplication of elements in M.
ON 0o 01 02 03 04 05 Og 07 012 013 014 015
Op |00 O1 O O3 04 O35 O O7 012 013 014 O15
01 01 g1 02 01 02 O2 g1 g2 g1 02 g1 02
02 02 g1 02 01 02 O1 g2 02 g1 g2 g1 g2
03 |03 01 02 03 04 04 O3 O4 O3 04 O3 04
04 |04 01 02 O3 04 O3 04 O4 O3 04 O3 04
05 |0s O1 02 O3 04 Op Oy 013 0O¢ O7 O O7
Og |0O¢ 01 02 O3 04 O 0O¢ O7 014 015 014 015
o7 |07y 01 02 O3 04 0O O7 O15 0O¢ Ot Og O7
J12 | 012 01 02 O3 04 013 O14 015 012 013 014 015
013 | 013 01 02 03 04 012 015 013 07 015 014 O15
014 | 014 01 02 O3 04 015 O7 015 014 015 014 015
015|015 01 02 03 04 014 015 015 014 015 014 015

In [1] the concept of the leftmost normal form graph hypersubstitution was
defined.

Definition 4.6. A graph hypersubstitution o is called leftmost if L(o(f)) = z1.

The set My (k1 of all leftmost normal form graph hypersubstitutions in M
is
My xy = {00,01,03,06,012,014}.
In [5] the concept of a proper hypersubstitution of a class of algebras was
introduced.

Definition 4.7. A hypersubstitution o is called proper with respect to the class
K of algebras if 6(s] ~ 6[t] € IdK for all s ~ ¢ € IdK.

A graph hypersubstitution with the property that o(f) contains both vari-
ables 1 and z9 is called regular. It is easy to check that the set of all regular
graph hypersubstitutions forms a groupoid M.

We want to prove that {oq, 04,012,014} is the set of all proper graph hyper-
substitutions with respect to the class K'.

In [1] the following lemma was proved.

Lemma 4.2. For each non-trivial term s,(s # z € X) and for all u,v € X,
we have
E(ds[s]) = E(s) U {(u,w)|(u,v) € E(s)}
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and
E(012[s]) = E(s) U {(v, u)|(u,v) € E(s)}.

Then we obtain:

Theorem 4.1. {0y,06,012,014} is the set of all proper graph hypersubstitu-
tions with respect to the class K' of (zy)z ~ x(yy) graph algebras.

Proof. For s = t € IdK', if s, ¢t are trivial terms, then ds[s], 012[s], Fs[t] and
012(t] are also trivial terms and thus ds[s] &~ ds[t] € IdK' and 012[s] ~ o72[t] €
IdK'. If s =t = x, we have the same result in the same manner.

Now, assume that s and ¢ are non-trivial terms, different from variables, and
s~ t € IdK'. Then (i), (i), (iii) and (iv) of Theorem 3.1 hold.

For 04 and 514, we obtain:

L(66[s]) = L(s) = L(t) = L(6s[t])
and
L(612[s]) = L(s) = L(t) = L(612[t]).
Since 0¢, 012 are regulars, we have the following:
V(dels]) = V(s) = V(t) = V(Ge]t])
and
V(612[s]) = V(s) = V(t) = V(612[t])-
By Lemma 4.2, we get that:
E(66[s]) = E(s) U{(u,v) | (u, ) E(s)},
E(56[t]) = E(t) U{(u,u) | (u,v) € E(®)},
E(612[s]) = E(s) U{(v,u) | (u, ) E(s)}
and
E(612[t]) = E(t) U{(v,u) | (u,v) € E(t)}.
For any z,y with z # y, suppose that (z,y) € E(6¢[s]), we have (z,y) € E(s).
Then by Theorem 3.1 (iii) (z,y) € E(t). Hence (z,y) € E(6s[t]). Conversely,
we prove that if (z,y) € E(ae[t]) then (z,y) € E(6¢[s])-

Now suppose that (z,z) € E(6¢[s]). If (z,z) € E(s), then by Theorem 3.1
(iv) there exists y € V(¢) such that (y,y) € E(t). Hence there exists y € V(t)
such that (y,y) € E(66[t]). If (z,z) ¢ E(s), then there exists y € V(s)
such that (z,y) € E(s). By Theorem 3.1 (iii), we get (z,y) € E(¢) and thus
(z,z) € E(&¢[t]). Conversely, we prove that if (z,x) € E(64[t]), then there
exists y € V(s) such that (y,y) € E(s). Hence by Theorem 3.1, we get that
Cfs[s] ~ fs[t] e IdK'.

Similarly, we get that o12[s] ~ 012[t] € IdK'.

Since 014 = 06 on 012 and og and 015 are proper graph hypersubstitutions,
we have 014 is a proper graph hypersubstitution.

For any o ¢ {00,06,012,014}, we give an identity s ~ t in IdK' such that
6(s] = 6[t] ¢ IdK'. Clearly, if s and ¢ are trivial terms with different leftmost
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and different rightmost, then 61[s] ~ 1[t] ¢ IdK', G2[s] = d2[t] ¢ IdK',
0A'3[S] ~ &3[t] ¢ IdK' and 6'4[8] I~ 6‘4[t] ¢ IdK'.

Let s = (z121)(x221) and t = z1((z221)z2). By Theorem 3.1, we get s & ¢ €
IdK'. If 0 € {05,07,013,015}, then L(a(f)) = z2. We see that L(6[s]) = 1
and L(6[t]) = z2. Thus 6[s] ~ 6[t] ¢ IdK'. |

Now, we apply our results to characterize all hyperidentities in the class of
all (zy)x ~ z(yy) graph algebras. Clearly, if s and ¢ are trivial terms, then
s & t is a hyperidentity in the class K’ if and only if they have the same leftmost
and the same rightmost and z =~ z,2 € X is a hyperidentity in the class K,
too. So we consider the case that s and ¢ are non-trivial and different from
variables. In [1] the concept of a dual term s? of the non-trivial term s was
defined in the following way:

If s =z € X, then z? = z, if s = t1¢,, then s = t4t{. The dual term
5% can be obtained by application of the graph hypersubstitution o5, namely
65[s] = s4.

Theorem 4.2. An identity s ~ t in the class K', where s and t are non-trivial
and s # z,t # x, is a hyperidentity in the class K' if and only if the dual
equation 5% = t% is also an identity in the class K'.

Proof. If s =~ t is a hyperidentity in the class K', then d5[s] ~ &5[t] is an
identity in the class X', i.e., s? ~ t? is an identity in the class K'. Conversely,
assume that s & ¢ is an identity in the class K’ and that s? ~ t¢ is an identity
in the class X’, too. We have to prove that s ~ t is closed under all graph
hypersubstitutions from M.

If 0 € {00,06,012,014}, then o is a proper and we get that 6[s] = d[t] €
IdK’'. By assumption, 65[s] = s? ~ t¢ = §5[t] is an identity in the class K'.

For 01,032,035 and o4, we have 6,[s] = L(s) = L(t) = 61[t], 62[s] = L(s%)
L(t%) = 65[t], 63[s] = L(s)L(s) = L(t)L(t) = 63[t] and &4[s] = L(s*)L(s%)
L(t4)L(t?) = 64[t].

Because of ggonos = 07, 0120805 = 013, 0140n05 = 015 and F[65[t']] =
6[t'"] for all ¢ € My, t' € W.(X), we have that 67[s] = 67[t], 13[s] & 613[t],
G15(s] & d15[t] are the identities in the class K'. O
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