• Title/Summary/Keyword: hyperfine field

Search Result 72, Processing Time 0.023 seconds

Crystallographic, Magnetic and Mössbauer Study of Phase Transition in LaVO3

  • Yoon, Sung-Hyun
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.108-112
    • /
    • 2007
  • Nature of phase transition in $LaVO_3$ has been studied using X-ray diffraction, SQUID magnetometer, and $M\"{o}ssbauer$ spectroscopy with 1% of $^{57}Fe$ doped sample. The crystal structure was orthorhombic with space group Pnma. Antiferromagnetic phase transition temperature $T_N$ was 140K, below which a weak ferromagnetic trace has been found. $M\"{o}ssbauer$ spectra below $T_N$ were single set of hyperfine sextet, which enabled us to discard the possibility of two inequivalent magnetic sites or uncompensated antiferromagnetism. Hyperfine magnetic field abruptly disappeared as low as about 90K, much below $T_N$.

Electron Spin Resonance Line-widths of Carbon Nanotubes based on the Hyperfine Interaction

  • Park, Jung-Il;Cheong, Hai-Du
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • The Kubo formalism and utilizing the projection operator technique (POT) introduced by Kawabata, the electron spin resonance (ESR) line-shape formula for carbon nanotubes through the hyperfine interaction introduced earlier in terms of POT. We can see that the line-width decreases exponentially as the temperature increases. The spin relaxation time show gradual decrease as magnetic field becomes larger. The analysis reveals the peculiarities in spin relaxation inherent to one dimensional system at low temperature and weak magnetic fields. Thus, the present technique is considered to be more convenient to explain the carbon nanotubes as in the case of other optical transitions.

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.

External Field Dependence of $Fe^57$ NMR in Pure Iron

  • Dho, Joongheo;Kim, Mincheol;Lee, Soonchil;Lee, Wonjong;Kim, Yoonbae
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 1996
  • The NMR spin echo in pure iron was measured as a function of external magnetic field up to 10 kgauss at room temperature. We observed the signal coming from a single domain formed over 7.5 kgauss which has not been detected in previous works. The resonance frequency shift with external field confirmed that the hyperfine field in iron is -330.2 kgauss. From the comparison of the magnetization curve with the domain wall signal and the resonance frequency in external field, we showed that NMR could give the useful qualitative information on the magnetization process. The extent of the internal strain removed by annealing, which can be hardly seen in hysteresis curves, was clearly shown up in the NMR line-width.

  • PDF

Electric Quadrupole Interaction in Copper-Iron-Chromium Oxide (구리-철-크롬 산화물에서의 전기사중극자 상호작용)

  • Shu, Seung-Wook;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.89-93
    • /
    • 2008
  • Ferrimagnetic Copper-Iron-Chromium Oxide $CuFe_{0.9}Cr_{1.1}O_4$ has been investigated over a temperature range from liquid nitrogen temperature upto $N{\acute{e}}el$ temperature using the Mossbauer technique. Its $N{\acute{e}}el$ temperature is found to be 355 K. Above the $N{\acute{e}}el$ temperature the quadrupole splitting is found to be 0.50 mm/s. On the other hand, all the electric quadrupole shift values are zero below the $N{\acute{e}}el$ temperature within experimental error. These seemingly contradictory phenomena have been explained by the model that the magnetic hyperfine field is randomly oriented with respect to the principal axes of the electric-field-gradient tensor.

The Mossbauer Spectra Changes Due to the Jahn-Teller Distortion in Sulphur Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$ (유화 Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$에서 Jahn - Teller Distortion에 의한 Mossbauer 공명 흡수선의 변화에 관한 연구)

  • 서정철;이민용;고영복
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.225-231
    • /
    • 1997
  • Sulphur Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$ has been studied with Mossbauer Spectroscopy between 4.2 K and room temperature. The $Fe^{2+}$ ion in a tetrahedral site is the Jahn-Teller active and the dynamic Jahn-Teller distortion starts below the magnetic ordering temperature. The distortion cause a quadrupole shift to appear which increases with decreasing temperature. The magnetic hyperfine field has a maximum at 100 k and then decreases with decreasing temperature. The magnitude of the interaction ratio R between the electric quadrupole and magnetic dipole interaction increases from 0 near the magnetic ordering temperature to 5.4 at 4.2 K. The optimum values of 0, the polar angle of the magnetic hyperfine field with respect to the principle axis of the electric field gradient (EFG) remains zero and the asymmetry of the EFG n is about 0.25. The simulations of Mossbauer spectra coincidence with the experimental results.

  • PDF

A Study on Embrittlement of Fast Neutron-irradiated Nuclear Reactor Pressure Vessel Steels at Room- and Liquid Nitrogen-temperature (상온 및 액체질소 온도에서 고속 중성자 조사된 원자로 압력 용기의 취화 현상에 관한 연구)

  • Kim, H.B.;Kim, H.S.;Kim, S.K.;Shin, D.H.;Yu, Y.B.;Ko, J.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.142-147
    • /
    • 2005
  • The embrittlement of fast neutron-irradiated reactor pressure vessel (RPV) steels was investigated by X-ray diffraction patterns at room temperature and $M\ddot{o}ssbauer$ spectroscopy at room- and liquid nitrogen-temperature. Neutron fluence on the samples were $10^{12},\;10^{13},\;10^{14},\;10^{15},\;10^{16},\;10^{17},\;10^{18}\;n/cm^2$. The X-ray diffraction patterns showed that the structure of the neutron unirradiated sample was bcc type, where as but the neutron irradiated samples with the fluence higher than $10^{17}\;n/{\cal}cm^2$ were so severely damaged, that bcc type structure disappeared. The $M\ddot{o}ssbauer$ spectra of all samples showed superposition of two or more sextets. In this paper all $M\ddot{o}ssbauer$ spectra were fitted by three set of sextet. The isomer shift and quadrupole splitting values were found around zero. At liquid nitrogen temperature, magnetic hyperfine field and absorption area increase rapidly S 1 sextet in the samples of $10^{17}\~10^{18}\;n/{\cal}cm^2$ neutron fluences. And at room temperature, magnetic hyperfine field and absorption increased rapidly at SI sextet in the samples of $10^{17}\~10^{18}\;n/{\cal}cm^2$ neutron fluences. This rapid increase of magnetic hyperfine field and absorption area were inferred to be caused by the change of $^{56}Fe,\;^{55}Mn$ into $^{57}Fe$ due to by neutron irradiation.

Crystallographic and Magnetic Properties of KFeO2 (KFeO2 분말의 제조 및 뫼스바우어 분광학 연구)

  • Moon, Seung-Je;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.38-42
    • /
    • 2007
  • The crystallographic and magnetic properties of $KFeO_2$ powder prepared by ball-mill method, have been studied by x-ray diffraction(XRD), $M\"{o}ssbauer$ spectroscopy, and vibrating sample magnetometer(VSM) measurements. The crystal structure of $KFeO_2$ powder at room temperature is determined to be an orthorhombic structure of Pbca with its lattice constants $a_0=5.557{\AA},\;b_0=11.227{\AA},\;c_0=15.890{\AA}$ by Rietveld refinement. $M\"{o}ssbauer$ spectra of $KFeO_2$ were taken at various temperatures ranging from 4.2 to 818 K. The magnetic hyperfine field and isomer shift value at 4.2 K and RT were 519 kOe, 489 kOe and 0.19 mm/s, 0.05 mm/s respectively. The average hyperfine field $H_{hf}(T)$ of the $KFeO_2$ shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.36(T/T_N)^{5/2}$ for $T/T_N$<0.7, indicative of spin-wave excitation.

$M\""{o}ssbauer$ Effet Studies on Nanocrystalline $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ Alloy (초미세결정립 $ Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ 합금의 $M\""{o}ssbauer$ 효과 연구)

  • 신영남;김재경;양재석;조익한;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • The crystallization behavior of the amorphous $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_{6}$ alloy with isothermal annealing at $552^{\circ}C$ was studied by $M\"{o}ssbauer$ spectroscopy. The amorphous phase was revealed to coexist together with $Do_{3}-FeSi$ nanocrystalline and Cu-duster in annealed alloys by $M\"{o}ssbauer$ spectrum analysis. At the early stage of crystallization, Si content of FeSi is high due to the creation of Cu-cluster, and decreases with annealing until 60 minutes, which results in the increase in the mean hyperfine field of FeSi, and thereafter keeps constant. After 60 minutes, the decrease in the mean hyperfine field of the residual armrphous, in spite of a slight change in the volume fraction of the FeSi and the residual armrphous, is caused by the increase in the content of Nb and B in residual amorphous phase. Both directions of the hyperfine field, those of the FeSi and the residual amorphous, become randomly oriented in about 60 minutes. For FeSi and Cu-duster, the Avrami exponents are 0.51 and O.65, the activation energies are 2.35 eV and 2.44 eV, and the incubation times are 2.4 minutes and 0.8 minutes respectively. Earlier formation of Cu-duster than that of FeSi is coincidence with the fact that Cu atom promotes the nucleation of the FeSi.

  • PDF

EPR Study of Furan Compounds Adsorbed on Cu(Ⅱ) Y Zeolite (Cu(Ⅱ) Y Zeolite에 흡착된 푸란화합물에 대한 EPR 연구)

  • Gon Seo;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.421-425
    • /
    • 1980
  • The EPR absorption of furan compounds adsorbed on CuY zeolite was studied. With the adsorption of furan on CuY a new high field having a width of 8 gauss and g-factor of 2.002 appeared in EPR spectrum, while the original signal of Cu(Ⅱ) decreased. When 2-methylfuran was adsorbed on Cu(15)Y a new absorption band with a hyperfine structure appeared. With the increase of the degree of Cu(Ⅱ) ion exchange the resolution of the hyperfine structure became poor. The appearance of the new band was interpreted in terms of the formation of a charge transfer complex between Cu(Ⅱ) ion and the furan ring.

  • PDF