• 제목/요약/키워드: hyperbolic response

검색결과 76건 처리시간 0.022초

A comparative study for bending of cross-ply laminated plates resting on elastic foundations

  • Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1569-1582
    • /
    • 2015
  • Two hyperbolic displacement models are used for the bending response of simply-supported orthotropic laminated composite plates resting on two-parameter elastic foundations under mechanical loading. The models contain hyperbolic expressions to account for the parabolic distributions of transverse shear stresses and to satisfy the zero shear-stress conditions at the top and bottom surfaces of the plates. The present theory takes into account not only the transverse shear strains, but also their parabolic variation across the plate thickness and requires no shear correction coefficients in computing the shear stresses. The governing equations are derived and their closed-form solutions are obtained. The accuracy of the models presented is demonstrated by comparing the results obtained with solutions of other theories models given in the literature. It is found that the theories proposed can predict the bending analysis of cross-ply laminated composite plates resting on elastic foundations rather accurately. The effects of Winkler and Pasternak foundation parameters, transverse shear deformations, plate aspect ratio, and side-to-thickness ratio on deflections and stresses are investigated.

지반 굴착 시 지반 거동에 따른 매설관 손상 평가 (Damage Assessment of Buried Pipelines due to Deep Excavation-Induced Ground Movements)

  • 유충식;최병석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.765-774
    • /
    • 2004
  • This paper presents a damage assesment method for buried pipelines subjected to Deep Excavation-induced ground movements. Ground deformation characteristics resulting from 3D finite element analysis was represented mathematically by a hyperbolic tangential function. A parametric study was performed on excavation depth and burial position of pipeline. The result of the parametric study indicate that length of hyperbolic tangential function affects the results of damage assessment. Using numerical studies for buried pipeline response to ground movements by relative flexibility of the pipe-soil system. The result of numerical studies are presented in forms of design charts which can be readily used for various condition encountered in practices.

  • PDF

Vibration analysis of FGM beam: Effect of the micromechanical models

  • Hadji, Lazreg
    • Coupled systems mechanics
    • /
    • 제9권3호
    • /
    • pp.265-280
    • /
    • 2020
  • In this paper, a new refined hyperbolic shear deformation beam theory for the free vibration analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equations of motion are derived from the Hamilton's principle. Navier type solution method was used to obtain frequencies, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the free vibration response of a simply supported FG beams.

A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.617-633
    • /
    • 2016
  • In this paper, the analysis of hyperbolic cooling tower on elastic subsoil exposed to unsymmetrical wind loading is presented. Modified Vlasov foundation model is used to determine the soil parameters as a function of vertical deformation profile within subsoil. The iterative parameter updating procedure involves the use of Open Application Programming Interface (OAPI) feature of SAP2000 to provide two way data flow during execution. A computing tool coded in MATLAB employing OAPI is used to perform the analysis of hyperbolic cooling tower with supporting columns over a hollow annular raft founded on elastic subsoil. The analysis of such complex soil-structure system is investigated under self-weight and unsymmetrical wind load. The response of the cooling tower on elastic subsoil is compared with that of a tower that its supporting raft foundation is treated as fixed at the base. The results show that the effect of subsoil on the behavior of cooling tower is considerable at the top and bottom of the wall as well as supporting columns and raft foundation. The application of a full-size cooling tower has demonstrated that the procedure is simple, fast and can easily be implemented in practice.

Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory

  • Laoufi, Imene;Ameur, Mohammed;Zidi, Mohamed;Bedia, El Abbes Adda;Bousahla, Abdelmoumen Anis
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.889-911
    • /
    • 2016
  • Using the hyperbolic shear deformation plate model and including plate-foundation interaction (Winkler and Pasternak model), an analytical method in order to determine the deflection and stress distributions in simply supported rectangular functionally graded plates (FGP) subjected to a sinusoidal load, a temperature and moisture fields. The present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Materials properties of the plate (elastic, thermal and moisture expansion coefficients) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Numerical examples are presented and discussed for verifying the accuracy of the present theory in predicting the bending response of FGM plates under sinusoidal load and a temperature field as well as moisture concentration. The effects of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratio, ratio of elastic coefficients (ceramic-metal) and three distributions for both temperature and moisture on deflections and stresses are investigated.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

Frequency response of film casting process

  • Hyun, Jae-Chun;Lee, Joo-Sung;Jung, Hyun-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.91-96
    • /
    • 2003
  • The sensitivity of the product to the ongoing sinusoidal disturbances of the process has been investigated in the film casting of viscoelastic polymer fluids using frequency response analysis. As demonstrated for fiber spinning process (Jung et al., 2002; Devereux and Denn, 1994), this frequency response analysis is useful for examining the process sensitivity and the stability of extensional deformation processes including film casting. The results of the present study reveal that the amplification ratios or gains of the process/product variables such as the cross-sectional area at the take-up to disturbances exhibit resonant peaks along the frequency regime as expected for the systems having hyperbolic characteristics with spilt boundary conditions (Friedly, 1972). The effects on the sensitivity results of two important parameters of film casting, i.e., the fluid viscoelasticity and the aspect ratio of the casting equipment have been scrutinized. It turns out that depending on the extension thinning or thickening nature of the fluid, increasing viscoelasticity results in enlargement or reduction of the sensitivity, respectively. As regards the aspect ratio, it has been found that an optimum value exists making the system least sensitive. The present study also confirms that the frequency response method produces results that corroborate well those by other methods like linear stability Analysis and transient solutions response. (Iyengar and Co, 1996; Silagy et al., 1996; Lee and Hyun, 2001).

Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory

  • Bouchafa, Ali;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1493-1515
    • /
    • 2015
  • A new refined hyperbolic shear deformation theory (RHSDT), which involves only four unknown functions as against five in case of other shear deformation theories, is presented for the thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson's ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates.