• Title/Summary/Keyword: hydroxyl radicals

Search Result 348, Processing Time 0.023 seconds

Effects of Natural Bioactive Substances on Hydroxyl Radical Mediated Cytotoxicity in Mouse Forebrain Cell Culture (쥐 전뇌세포 배양에 있어서 천연 생리활성물질이 하이드록실 라디칼에 의한 세포독성에 미치는 영향)

  • 이정채;임계택
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.171-176
    • /
    • 1998
  • The biological effects of the water extracts of Rhus Verniciflua Stokes (RVS) were evaluated by protection against hydroxyl radicals. Antioxidative activities were measured using both 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiocyanate method. Also we used the Glucose oxidase (GO) 20 mU/$\textrm{m}{\ell}$ hydroxyl radical generating system in mouse forebrain cell culture. Water was used for ex-traction from RVS as a solvent which has high polarity especially. In DPPH method, the antioxidative activities of the crude water extract were stronger than any other extracts of low polar-solvents. In the antioxidative effects of mouse forebrain culture using 20 mU/$\textrm{m}{\ell}$ GO, cell viabilities were evaluated 65.6%, 68.8% at 1 $\mu\textrm{g}$. 5 $\mu\textrm{g}$ addition of crude water extracts (30 mg/$\textrm{m}{\ell}$) respectively. 10 $\mu\textrm{g}$ addition of crude water extracts had more than 86.1% cell viabilities, P<0.0l significantly, compared with the group treated with GO alone. In comparison with the antioxidative activities of several commercial antioxidants (ascorbic acid, $\alpha$-tocopherol, catalase, serum), 273 $\mu\textrm{g}$/$\textrm{m}{\ell}$ addition of crude water extracts (300 $\mu\textrm{g}$/$\textrm{m}{\ell}$) showed equivalent antioxidative effect to 25 uM ascorbic acid.

  • PDF

An Experimental Study on the Removal of Chlorophenol by TiO2/H2O2/UV Using Continuous flow Reactor (연속흐름식 반응기를 이용한 TiO2/H2O2/UV에 의한 클로로페놀 제거(除去)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Sang-Hyup;Park, Joo-Suk;Park, Chung-Hyun;Kim, Dong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.55-64
    • /
    • 1998
  • The degradation efficiency of chlorophenolic compounds in $TiO_2/H_2O_2$ combined system was compared with that of in $TiO_2$ sole system. As a result, the addition of hydrogen peroxide in photocatalytic oxidation reaction greatly enhanced the degradation efficiency of chlorophenolic compounds due to the availability of the hydroxyl radical formed on the $TiO_2$ surface. The hydrogen peroxide under UV illumination produces hydroxyl radicals that appear to be another source of hydroxyl radical formation. These results indicated the $TiO_2/H_2O_2$ combined system shows higher degradation efficiency than the $TiO_2$ sole system. Compared to another oxidation reaction, hydrogen peroxide assisted photocatalytic oxidation is more promising in practical aspect.

  • PDF

Antibacterial Effect of Amentoflavone and Its Synergistic Effect with Antibiotics

  • Hwang, Ji Hong;Choi, Hyemin;Woo, Eun-Rhan;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.953-958
    • /
    • 2013
  • Selaginella tamariscina is a traditional herb used in medicine. Phytochemical amentoflavone, a biflavonoid class of flavonoids, was isolated from the plant of Selaginella tamariscina. In this study, the antibacterial effects and combination effects of amentoflavone and conventional antibiotics such as ampicillin, cefotaxime, and chloramphenicol were investigated. These results showed that amentoflavone had a considerable antibacterial effect and synergistic interaction with antibiotics against various bacterial strains (fractional inhibitory concentration index ${\leq}$ 0.5), except for Streptococcus mutans. To study the mechanism(s) involved in the synergistic activities between amentoflavone and antibiotics, we detected hydroxyl radical formation using 3'-(p-hydroxyphenyl) fluorescein and measured the $NAD^+/NADH$ ratio by $NAD^+$ cycling assay. The results indicated that the formation of hydroxyl radical would be a cause of the synergistic effect and that this oxidative stress originated from a transient NADH depletion. This study suggests that amentoflavone synergizes with antibiotics and has potential as a therapeutic agent for antimicrobial chemotherapy.

Salsolinol, a tetrahydroisoquinoline-derived neurotoxin, induces oxidative modification of neurofilament-L: protection by histidyl dipeptides

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.114-119
    • /
    • 2012
  • Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegeneration. Oxidative modification of neurofilament proteins has been implicated in the pathogenesis of neurodegenerative disorders. In this study, oxidative modification of neurofilament-L (NF-L) by salsolinol and the inhibitory effects of histidyl dipeptides on NF-L modification were investigated. When NF-L was incubated with 0.5 mM salsolinol, the aggregation of protein was increased in a time-dependent manner. We also found that the generation of hydroxyl radicals (${\bullet}OH$) was linear with respect to the concentrations of salsolinol as a function of incubation time. NF-L exposure to salsolinol produced losses of glutamate, lysine and proline residues. These results suggest that the aggregation of NF-L by salsolinol may be due to oxidative damage resulting from free radicals. Carnosine, histidyl dipeptide, is involved in many cellular defense processes, including free radical detoxification. Carnosine, and anserine were shown to significantly prevent salsolinol-mediated NF-L aggregation. Both compounds also inhibited the generation of ${\bullet}OH$ induced by salsolinol. The results indicated that carnosine and related compounds may prevent salsolinol-mediated NF-L modification via free radical scavenging.

Antioxidation, Physicochemical, and Sensory Characteristics of Sulgidduck Fortified with Water Extracts from Moringa oleifera Leaf (모링가 잎 열수 추출물을 첨가한 설기떡의 항산화, 이화학 및 관능 특성)

  • Choi, Eun-Ju;Kim, Eun-Kyung
    • Korean journal of food and cookery science
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 2015
  • The aim of this investigation was to examine the antioxidation, physicochemical, and sensory activity of a Korean steamed-rice cake, Sulgidduk, fortified with water extracts from Moringa oleifera (M. oleifera) leaf. M. oleifera leaf extracts were added to rice powder at rations of 0.1%, 1% and 10%. To examine antioxidation properties, the scavenging activities of DPPH radicals, hydroxyl radicals, ABTS+ radicals, and ferric ion reducing antioxidant power were investigated. M. oleifera extracts significantly increased the antioxidation activities of Sulgidduk in a dose dependent manner (p<0.05). Physicochemical characteristics were measured by proximate composition, color, texture profile analysis, and sensory evaluations. As the concentration of M. oleifera leaf extracts increased, L-values and a-values significantly decreased while b-values increased. Texture profile analysis demonstrated that the control groups showed significantly higher values for hardness, cohesiveness, chewiness, and adhesiveness as compared with groups containing M. oleifera leaf extract (p<0.05). In the sensory evaluation, the sample containing 0.1% of M. oleifera leaf extract obtained the best results in overall preference. Taken together, these results suggest that M. oleifera leaf may have the potential to increase the consumer acceptability and the functionality of Sulgidduk.

Oxidative Damage of DNA Induced by Ferritin and Hydrogen Peroxide

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2873-2876
    • /
    • 2010
  • Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. Previous studies have shown that one of the primary causes of increased brain iron may be the release of excess iron from intracellular iron storage molecules. In this study, we attempted to characterize the oxidative damage of DNA induced by the reaction of ferritin with $H_2O_2$. When DNA was incubated with ferritin and $H_2O_2$, DNA strand breakage increased in a time-dependent manner. Hydroxyl radical scavengers strongly inhibited the ferritin/$H_2O_2$ system-induced DNA cleavage. We investigated the generation of hydroxyl radical in the reaction of ferritin with $H_2O_2$ using a chromogen, 2,2'-azinobis-(2-ethylbenzthiazoline-6-sulfonate) (ABTS), which reacted with ${\cdot}OH$ to form $ABTS^{+\cdot}$. The initial rate of $ABTS^{+\cdot}$ formation increased as a function of incubation time. These results suggest that DNA strand breakage is mediated in the reaction of ferritin with $H_2O_2$ via the generation of hydroxyl radicals. The iron-specific chelator, deferoxamine, also inhibited DNA cleavage. Spectrophotometric study using a color reagent showed that the release of iron from $H_2O_2$-treated ferritin increased in a time-dependent manner. Ferritin enhanced mutation of the lacZ' gene in the presence of $H_2O_2$ when measured as a loss of $\alpha$-complementation. These results indicate that ferritin/$H_2O_2$ system-mediated DNA cleavage and mutation may be attributable to hydroxyl radical generation via a Fenton-like reaction of free iron ions released from oxidatively damaged ferritin.

Antioxidant Activity of Essential Oils from Wedelia chinensis (Osbeck) in vitro and in vivo Lung Cancer Bearing C57BL/6 Mice

  • Manjamalai, A.;Grace, V.M. Berlin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3065-3071
    • /
    • 2012
  • Aim: The present investigation was to evaluate the effects of essential oils of Wedelia chinensis (Osbeck) on free radicals and in vivo antioxidant properties. Methods: Essential oils were extracted using hydro-distillation and compound analysis was performed by GC-MS analysis. Screening for inhibitory activity was conducted by DPPH and OH-scavenging assays. In addition an in vivo study was carried out in cell line implanted cancer bearing mice with assessment of levels of catalase, superoxide dismutase, glutathione peroxidase, lipid peroxidation, nitric oxide and reduced glutathione. Finally, lungs were dissected out for histopathology study of metastasis. Results: GC-MS analysis revealed the presence of carvocrol and trans-caryophyllene as the major compounds with 96% comparison with the Wilily and NBS libraries. The essential oil exhibited significant inhibition in DPPH free radical formation. Whereas reducing power and hydroxyl radical scavenging activity are dose dependent. When compared with the standard, it was found that the essential oil has more or less equal activity in scavenging free radicals produced. In the animal studies, the level of antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase, as well as glutathione, were found to be increased in treated groups whereas lipid peroxidation and nitric oxide were reduced. Histopathology report also shows that the essential oil has a significant combating effect against cancer development. Conclusion: In all the in vitro assays, a significant correlation existed between the concentrations of the essential oil and percentage inhibition of free radicals. The in vivo studies also has shown a very good antioxidant property for the essential oil during cancer development. From, these results the essential oil can be recommended for treating disease related to free radicals and to prevent cancer development.

Free Radical Scavenging Activity of the Seed of Phaseolus calcaratus Roxburgh

  • Fang, Minghao;Cho, Hyoung-Kwon;Ahn, Yun-Pyo;Ro, Sang-Jeong;Jeon, Young-Mi;Whang, Wan Kyuun;Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.169-174
    • /
    • 2010
  • The seed of Phaseolus calcaratus Roxburgh (PHCR) is traditionally used for anti-pyretic and antiinflammatory effects. Although these effects are believed to be related to its antioxidant potential, little information is available for the mechanisms by which PHCR seed might scavenge free radicals or otherwise act as an antioxidant. In the present study, we purified some fractions from the ethanol extract of PHCR seed and evaluated each fraction's ability to scavenge free radicals generated by cell-free systems. We also identified active compound that is putatively responsible for free radical scavenging by analyzing NMR spectra. PHCR samples exhibited a concentration-dependent radical scavenging activity against hydroxyl radicals, superoxide anions, and DPPH radicals. Of the samples tested, a methanol-eluted sub-fraction from the PHCR extract, named $FF_4$, scavenged these radicals more effectively than the other fractions. We identified catechin-7-O-$\beta$-Dglucopyranoside as the active compound responsible for free radical scavenging potential of $FF_4$.

EFFECTS OF SURFACTANTS ON THE FENTON DEGRADATION OF PHENANTHRENE IN CONTAMINATED SEDIMENTS

  • Jee, Sang-Hyun;Ko, Seok-Oh;Jang, Hae-Nam
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.138-143
    • /
    • 2005
  • Laboratory batch experiments were conducted to evaluate the Fenton degradation rates of phenanthrene. Fenton reactions for the degradation of phenanthrene were carried out with aqueous and slurry phase, to investigate the effects of sorption of phenanthrene onto solid phase. Various types of surfactants and electrolyte solutions were used to evaluate the effects on the phenanthrene degradation rates by Fenton's reaction. A maximum 90% removal of phenanthrene was achieved in aqueous phase with 0.9% of $H_2O_2$ and 300 mg/L of $Fe^{2+}$ at pH 3. In aqueous phase reaction, inhibitory effects of synthetic surfactants on the removal of phenanthrene were observed, implying that surfactant molecules acted as strong scavenger of hydroxyl radicals. However, use of $carboxymethyl-{\beta}-cyclodextrin$ (CMCD), natural surfactant, showed a slight enhancement in the degradation of phenanthrene. It was considered that reactive radicals formed at ternary complex were located in close proximity to phenanthrene partitioned into CMCD cavities. It was also show that Fenton degradation of phenanthrene were greatly enhanced by addition of NaCl, indicating that potent radical ion ($OCI^-$) played an important role in the phenanthrene degradation, although chloride ion might be acted as scavenger of radicals at low concentrations. Phenanthrene in slurry phase was resistant to Fenton degradation. It might be due to the fact that free radicals were mostly reacting with dissolved species rather than with sorbed phenanthrene. Even though synthetic surfactants were added to increase the phenanthrene concentration in dissolved phase, low degradation efficiency was obtained because of the scavenging of radicals by surfactants molecules. However, use of CMCD in slurry phase, showed a slight enhancement in the phenanthrene degradation. As an alternative, use of Fenton reaction with CMCD could be considered to increase the degradation rates of phenanthrene desorbed from solid phase.

A Study on the Photodegradative Behavior of the Dibenzothiophene (DBP) in Water System (수용액중의 디벤조치오펜의 광화학적 분해반응의 연구)

  • Kim, Jae-Hyoun
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.3
    • /
    • pp.121-126
    • /
    • 1999
  • The present paper describes a study of the photochemical kinetics and its oxidation mechanism of DBT. The photolysis of DBT in aqueous solution media have shown to have significant oxidation activities for the photolytic desulfurization of DBT. The oxidation effect was more pronounced in 4 % NaCl solution. A mechanism was proposed that the desulfurization process arise from the substution of sulfur by the hydroxyl radicals in different aqueous medium.

  • PDF