• Title/Summary/Keyword: hydroxyl radicals

Search Result 348, Processing Time 0.026 seconds

Hydroxyl Radical-Mediated Commitment of HL-60 Cells to Differentiation: Modulation of Differentiation Process by Phosphodiesterase Inhibitors

  • Cho, Young-Jin;Ahn, Woong-Shick;Cha, Seok-Ho;Lee, Kweon-Haeng;Kim, Won-Il;Chung, Myung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.369-376
    • /
    • 1998
  • This report shows that hydroxyl radical, generated by a Fenton reaction involving adenosine $5'-diphosphate/Fe^{2+}$ complex ($5-15\;{\mu}M$) and $H_2O_2$ ($2\;{\mu}M$), induced differentiation of HL-60 cells in a dose- and time-dependent manner. This is evidenced by the increases in 12-O-tetradecanoylphorbol 13-acetate- and fMLP-stimulated superoxide production capability. The cells exposed to hydroxyl radical for defined periods (24∼96 hr) continued to differentiate even after the hydroxyl radical generating system had been removed. The differentiated cells displayed fMLP-stimulated calcium mobilization and increased expression of myeloid-specific antigen CD11b and CD14. The extent of the differentiation was markedly reduced by desferrioxamine ($100\;{\mu}M$), dimethylthiourea (5 mM), N,N'-diphenyl-1,4-phenylenediamine ($2\;{\mu}M$), and N-acetyl-L-cysteine (5 mM). The induction of differentiation by hydroxyl radical was enhanced by 3-isobutyl-1-methylxanthine ($200\;{\mu}M$) and Ro-20-1724 ($8\;{\mu}M$), and inhibited by dipyridamole (2 ${\mu}M$). These results suggest that hydroxyl radicals may induce commitment of HL-60 cells to differentiate into more mature cells of myelomonocytic lineage through specific signal-transduction pathway that is modulated by phosphodiesterase inhibitors.

  • PDF

Inhibitory Effect of Extract from Acanthocoris sordidus on Oxidative Damage (꽈리허리노린재(Acanthocoris sordidus) 추출물이 산화적 손상에 미치는 억제 효과)

  • Park, Young Mi;Lim, Jae Hwan;Lee, Jong Eun;Seo, Eul Won
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1078-1084
    • /
    • 2014
  • Here, we showed that Acanthocoris sordidus extract inhibited both cell and DNA damage caused by oxidative stress. In a radical scavenging assay, the scavenging activity of the A. sordidus extract against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals was 48.9% and 37.8%, respectively, that of ascorbic acid, which was used as a positive control. The ferrous iron chelating activity of the A. sordidus extract was 80.0% compared to that when ethylenediaminetetraacetic acid (EDTA) was used a control. To verify the inhibitory effect of the extract on oxidative cell damage induced by reactive oxygen species (ROS), a lipid peroxidation assay was performed. The results showed that peroxidation was completely inhibited in an extract-treated group compared to a radical-treated group. The level of p21 protein expression was 68.1% that of a control sample. The DNA cleavage-inhibiting property of the A. sordidus extract-treated group was 53.3% that of a control group. Moreover, the phosphorylation of the H2AX protein was reduced to 39.0% of that treated with radical agents, indicating that the extract might inhibit the DNA damage that causes radical oxidation. Taken together, our findings suggest that the A. sordidus extract is effective not only in repressing oxidation by free oxygen radicals and hydroxyl radicals but also in decreasing cell and DNA damage caused by oxidative stress.

Effect of Curcuma longa Hot Water Extract on Activity of Neuronal Cells Related to Oxidative Stress (산화적 스트레스와 관련하여 신경세포의 활성에 미치는 강황 열수추출물의 영향에 대한 연구)

  • Chae, Yong-Byung;Chung, Kyung-Tae;Kim, Sung-Goo;Yoo, Byung-Hong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.657-664
    • /
    • 2012
  • The aim of this study is to screen a therapeutic agent with a cognitive function. The inhibitory effect of $Curcuma$ $longa$ hot water extract (CLWE) on the angiotension-converting enzyme and acetylcholinesterase derived from rabbit lungs and neural cells (PC12), as well as its antioxidant effect, was investigated in this study. Thus, for the first time, the direct scavenging effect of CLWE on DPPH radicals, superoxide anions, hydroxyl radicals, lipid peroxidation, reducing power, and the protective effect of DNA oxidation related to oxidative stress was evaluated in vitro. In addition, it was observed that CLWE especially exhibited a scavenging effect on reducing power and superoxide anions in this study. CLWE showed a protective effect on DNA oxidation produced by hydroxyl radicals. Furthermore, CLWE inhibited the activity of angiotensin-converting enzymes above 0.25%. Additionally, the extract inhibited oxidative stress and inducible nitric oxide in neuronal cells. Therefore, these results demonstrated that CLWE has antioxidant activity and neuronal cell protective effects, suggesting that it may have great potential as a natural source for human health.

Hydroxyl Radical Species Generated by Non-thermal Direct Plasma Jet and Their Qualitative Evaluation

  • Ghimire, B.;Hong, S.I.;Hong, Y.J.;Choi, E.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.2-198.2
    • /
    • 2016
  • Reactive oxygen and nitrogen species (RONS) can be generated by using non-thermal atmospheric pressure plasma jet which have profound biomedical applications [1, 2]. In this work, reactive oxygen species like hydroxyl radical (OH) are generated by using non-thermal direct plasma jet above water surface using Ar gas and their properties have been studied using ultraviolet absorption spectroscopy. OH radicals are found to be generated simultaneously with the discharge current with concentration of $2.7{\times}1015/cm3$ at 7mm above water surface while their persistence time have been measured to be $2.8{\mu}S$. In addition, it has been shown that plasma initiated ultraviolets play a major role to generate RONS inside water. Further works are going on to measure the temporal behavior of OH and $O2^*-$.

  • PDF

Sensitized Photodegradation of Benzene in Water

  • Kim, Young-Hee;Ahn, Sang-Jun;Park, Hyun-Geoun;Lee, Chun-Sik
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.79-84
    • /
    • 2000
  • The photodegradation of benzene was studied in an aqueous solution using a medium pressure Hg-lamp. In this study, persulfate, nitrate, nitrite, chloride, and sulfate ions were all tested as sensitizers. The persulfate, nitrate, and nitrite ions exhibited a sensitizing effect in the photodegradation of benzene, whereas no detectable effects were observed with the sulfate and chloride ions. When nitrite ions were used as the sensitizer, the photodegradation of benzene ran through a maximum value and thereafter decreased with an increasing nitrite concentration. The resulting build-up of nitrite ions seemed to scavenge the hydroxyl radicals. When nitrite ions were present along with persulfate ions, the photodegradation of benzene was inhibited.

  • PDF

Application of Chemical Ionization Mass Spectrometry to Heterogeneous Reactions of OH with Aerosols of Tropospheric Interest

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Studies performed on heterogeneous reactions of hydroxyl radicals (OH) in aerosol materials of tropospheric interest are presented, focusing on the chemical ionization mass spectrometric approach. Kinetic investigations of these reactions reduced deviation in the estimation of OH concentration in the troposphere by atmospheric modeling from field measurements. Recently, OH uptake was investigated under wet conditions to acquire kinetic information under more realistic conditions representative of the troposphere. The information on the mechanism and kinetics of OH uptake by tropospheric aerosol materials will contribute to the updating of atmospheric models, allowing a better understanding of the troposphere.

Antioxidant Activity of the Seagrass Zostera japonica (애기거머리말의 항산화 활성)

  • Kwak, Myoung Kuk;Kim, Da Seul;Oh, Kwang-Suk;Seo, Youngwan
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.271-277
    • /
    • 2014
  • In this study, crude extract of the seagrass Zostera japonica, and its solvent-partitioned fractions were evaluated for their antioxidant activity. The crude extract was successively fractionated into n-hexane, 85% aqueous methanol (85% aq.MeOH), n-butanol (n-BuOH), and water fractions by liquid-liquid partition. These include DPPH radical scavenging, hydroxyl radical scavenging in HT-1080 cells, peroxynitrite scavenging, and protective effect on DNA damage caused by hydroxyl radicals generated. In all assays, except for DPPH radical, 85% aq.MeOH and n-BuOH fraction showed the strong antioxidant activity. These results suggest that Z. japonica may be used as a potential source of natural antioxidants for the development of cosmetic product or functional food in the future.

FORMATION OF KETOACIDS AND AOC DURING OZONATION IN DRINKING WATER

  • Lee, Kyung-Hyuk
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.293-302
    • /
    • 2006
  • The reaction of ozone with NOM (Natural Organic Matter) can occur by two different pathways: that involving molecular ozone and by way of reactions with hydroxyl radicals which are produced from the decomposition of molecular ozone. As such, the formation of ketoacids and Assimilable Organic Carbon (AOC) can be controlled by controlling the pathway by which ozone reacts with NOM. The ratios of $[OH{\cdot}]/[O_3]$ ($R_{CT}$ values) were determined under the various ozonation conditions. The $R_{CT}$ values increased with increasing initial ozone concentration. The $R_{CT}$ values (ranges from 10 to $35^{\circ}C$) increased linearly as temperature increased (within the range from 10 to $35^{\circ}C$). However, $R_{CT}$ was independent of hydraulic retention time (HRT). Operational conditions were found to affect the formation of AOC. The conditions where the molecular ozone reaction predominated resulted in an increase in the formation of AOC.

Modification of Cu,Zn-Superoxide Dismutase by Oxidized Catecholamines

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.325-329
    • /
    • 2004
  • Oxidation of catecholamines may contribute to the pathogenesis of Parkinson's disease (PD). The effect of the oxidized products of catecholamines on the modification of Cu,Zn-superoxide dismutase (SOD) was investigated. When Cu,Zn-SOD was incubated with the oxidized 3,4-dihydroxyphenylalanine (DOPA) or dopamine, the protein was induced to be aggregated. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of catecholamines in the presence of copper ion. Radical scavengers, azide, N-acetylcysteine, and catalase inhibited the oxidized catecholamine-mediated Cu,Zn-SOD aggregation. Therefore, the results indicate that free radicals may play a role in the aggregation of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to catecholamines was subsequently analyzed by an amino acid analysis, the glycine and histidine residues were particularly sensitive. These results suggest that the modification of Cu,Zn-SOD by oxidized catecholamines might induce the perturbation of cellular antioxidant systems and led to a deleterious cell condition.

Effect of Silkworm Powder on Oxygen radicals and Their Scavenger Enzymes in Brain membranes of SD Rats (뇌조직의 활성산소 및 그 제거효소에 미치는 누에분말의 영향)

  • 최진호;김대익;박수현;김동우;김정민;이희삼;류강선
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.93-98
    • /
    • 2000
  • This study was designed to investigate the effect of silkworm powder on oxygen radicals and their scavenger enzymes in brain membrances of SD rats. Hydroxyl radical (OH) levels resulted in a considerable decreases in brain mitochondria fraction. Superoxide radical (O$_2$) levels were a slightly decreased in brain cytosol fraction. Lipid peroxide (LPO) and Oxidized protein (OP) levels were significantly decreased in brain mitochondria and microsomes fraction. Mn-superoxide dismutase (SOD) activity was remarkably increased in the mitochondria fraction. Cu and Zn-SOD activities were effectively increased in brain cytosol fraction. GSHPx activity was considerably increased in brain cytosol fraction. These results suggest that anti-aging effect of silkworm plays an effective role in attenuating an oxidative stress and increasing a scravenger enzyme activity in brain membranes.

  • PDF