• Title/Summary/Keyword: hydroxyapatite (HAP)

Search Result 147, Processing Time 0.028 seconds

The Heat Treatment Characteristics of Hydroxyapatite Thin Films Deposited by RF Sputtering (RF 스퍼터링으로 증착된 하이드록시아파타이트 박막의 열처리 특성)

  • Jung, Chan-Hoi;Lee, Jun-Hee;Shin, Youn-Hak;Kim, Myung-Han;Choi, Sock-Hwan;Kim, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.218-224
    • /
    • 2006
  • RF sputtering process was applied to produce thin hydroxyapatite(HAp) films on Ti-6Al-4V alloy substrates. The effects of different heat treatment conditions on the hardness between HAp thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the Ti-6Al-4V alloy substrates were heat treated for 1h at $850^{\circ}C\;under\;3.0{\times}10^{-3}torr$, and after deposition, the HAp thin films were heat treated for 1h at $400^{\circ}C,\;600^{\circ}C\;and\;800^{\circ}C$ under the atmosphere, and analyzed FESEM-EDX, FTIR, XRD, nano-indentor, micro-vickers hardness, respectively. Experimental results represented that the surface defects of thin films decreased by relaxation of internal stress and control of substrate structure followed by heat treatment of substrates before the deposition, and the HAp thin films on the heat-treated substrates had higher hardness than none heattreated substrates before the deposition, and the hardness properties of HAp thin films and Ti-6Al-4V alloy substrates appeared independent behavior, and the hardness of HAp thin films decreased by formation of $VTiO_3(OH),\;{\theta}-Al_{0.32}V_2O_5,\;Al_{0.33}V_2O_5$.

Operating result of Hydroxyapatite Crystallization-Filtration (HCF) process and characterization of its sludge for wastewater effluent (하수 인 고도처리를 위한 인 결정여과공정 운전결과 및 부산슬러지 특성 검토)

  • Chang, Hyang-Youn;Kim, Weon-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.401-401
    • /
    • 2022
  • 우리나라 대규모 하수처리장에 상용화되어있는 응집공정의 운영상 난점을 극복하고자 대체공정으로 고안된 인 결정여과공정(HCF, Hydroxyapatite Crystallization-Filtration process)의 pilot plant를 구축하고 부산슬러지의 자원화를 위해 그 특성을 검토하였다. 기존의 hydroxyapatite(HAP) 결정화공정 내 탈탄산(decarbonation) 단계를 생략하는 HCF공정의 경우에 고농도의 Ca2+ 주입과 처리수내 탄산염으로 인해 HAP을 포함하는 석회계 슬러지가 발생하는데, 이는 산성화된 토양의 개량제(중화제)로 널리 사용될 수 있다. 본 연구를 위해 경기도 I하수처리장 2차침전지 후단에 구축된 처리용량 27.1 - 135.6 m3/day HCF pilot plant의 전처리 조건은 pH 10.0 - 11.0, Ca2+ 농도 80 mg/L이었다. 결정여과조는 선속도 1.0 - 5.0 m/hr, 상향류로 운전되며, 여재는 2.0 - 3.0 mm의 석회석 모래를 충전하였다. 역세척은 중앙에 Air lifting pipe를 설치하여 역세척수가 처리수와 분리배출되도록 설계하였고, 침전시켜 역세척 슬러지를 회수하였다. 처리수의 평균 T-P, PO4-P 및 SS는 각각 0.05, 0.04, 1.1 mg/L으로 모든 항목에서 방류수 수질기준 이하로 안정적으로 유출되었다. 회수된 HCF 슬러지는 SEM-EDX, XRD, FT-IR을 활용하여 그 특성을 분석하였다. SEM-EDX로 분석된 슬러지의 원자분율은 CaCO3 또는 HAP으로 추측되었다. 또한, XRD spectrum 분석결과, 슬러지의 주요 구성성분은 calcite, HAP, phosphoric acid(H3PO4) 및 brusite로 나타났다. FT-IR 분석결과, 슬러지는 대부분 인산염 및 탄산염의 무기물로 구성되어 있으며, 유입수의 인 농도가 높을수록 슬러지 내 HAP의 함량이 calcite보다 높은 것으로 나타났다. 고농도의 Ca2+을 주입하여 탈탄산단계를 생략한 HCF의 부산슬러지는 HAP 이외에도 CaCO3와 칼슘-인 화합물로 구성되어 있는 것으로 나타났다. 하수 인 고도처리를 위한 HCF공정의 하수처리시설 인 고도처리 적용이 검증되었으며, 부산슬러지를 산성화된 토양의 개량제(중화제) 또는 비료로서의 재활용 및 자원화 가능성이 시사되었다.

  • PDF

Effects of the combination of bone morphogenetic protein-2 and nano-hydroxyapatite on the osseointegration of dental implants

  • Pang, KangMi;Seo, Young-Kwon;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.6
    • /
    • pp.454-464
    • /
    • 2021
  • Objectives: This study aimed to investigate the in vitro osteoinductivity of the combination of bone morphogenetic protein-2 (BMP-2) and nanohydroxyapatite (nHAp) and the in vivo effects of implants coated with nHAp/BMP-2. Materials and Methods: To evaluate the in vitro efficacy of nHAp/BMP-2 on bone formation, bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded onto titanium disks coated with collagen (Col), Col/nHAp, or Col/nHAp/BMP-2. Protein levels were determined by a biochemical assay and reverse transcriptase-polymerase chain reaction. Stem cell differentiation was analyzed by flow cytometry. For in vivo studies with mice, Col, Col/nHAp, and Col/nHAp/BMP-2 were injected in subcutaneous pockets. Titanium implants or implants coated with Col/nHAp/BMP-2 were placed bilaterally on rabbit tibias and evaluated for 4 weeks. Results: In the in vitro study, BM-MSCs on Col/nHAp/BMP-2 showed reduced levels of CD73, CD90, and CD105 and increased levels of glycosaminoglycan, osteopontin, and alkaline phosphatase activity. After 4 weeks, the Col/nHAp/BMP-2 implant showed greater bone formation than the control (P=0.07), while no differences were observed in bone implant contact and removal torque. Conclusion: These results suggest that a combination of BMP-2 and an nHAp carrier would activate osseointegration on dental implant surfaces.

New Evaluation of Initial Growth Mechanisms of Hydroxyapatite on Self-assembled Collagen Nanofibrils by Using ToF-SIMS and AFM Techniques

  • Park, Young-Jae;Choi, Gyu-Jin;Lee, Tae-Geol;Lee, Won-Jong;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.397-397
    • /
    • 2010
  • Bone is considered as hierarchically organized biocomposites of organic (collagen) and inorganic (hydroxyapatite) materials. The precise structural dependence between hydroxyapatite (HAp, $Ca_{10}(PO_4)_6(OH)_2)$ crystals and collagen fibril is critical to unique characteristics of bone. To meet those conditions and obtain optimal properties, it is essential to understand and control the initial growth mechanisms of hydroxyapatite at the molecular level, such as other nano-structured materials. In this study, collagen fibrils were prepared by adsorbing native type I collagen molecules onto hydrophobic surface. Hydrophobicity was introduced on the Si wafer surface by using PECVD (plasma enhanced chemical vapor deposition) method and cyclohexane as a precursor. Biomimetic nucleation and growth of HAp on the self-assembled collagen nanofibrils were occurred through incubation of the sample in SBF (simulated body fluid). Chemical and morphological evolution of HAp nanocrystals was investigated by surface-sensitive analytical techniques such as ToF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) and AFM (Atomic Force Microscopy) in the early growth stages (< 24 hrs). The very initial stages (< 12 hrs) of mineralization could be clearly demonstrated by ToF-SIMS chemical mapping of surface. In addition to ToF-SIMS and AFM measurement, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis were conducted to characterize the HAp layer in the late stages. This study is of great importance in the growth of real bone-like materials with a structure analogous to that of natural bones and the development of biomimetic nanomaterials.

  • PDF

Determination of Hydroxyapatite Precipitation Condition from the $Ca-PO_4-H_2O$ System ($Ca-PO_4-H_2O$계로부터 수산화아파타이트의 침전조건 결정)

  • Oh, Young-Jei
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.208-214
    • /
    • 2000
  • The formation and dissolution of hydroxides, carbonates and hydroxyapatite (HAp), which depend on the pH of solution, are important factor for the preparation of homogeneous and fine HAp, $Ca_{10-x}(HPO_4)_x(PO_4)_{6-x}(OH)_{2-x}(x=0)$, ceramic powder from the $Ca-PO_4-H_2O$ system. Since the solubility of each complex ion is a linear function of pH, the solubility diagram can be obtained by plotting the logarithmic molar concentrations calculated from the values of the equilibrium constants and solubility products for hydroxides, carbonates, and hydroxyapatite. The optimum pH condition for the formation of single phase $Ca_{10-x}(HPO_4)_x(PO_4)_{6-x}(OH)_{2-x}(x=0)$ powder in $Ca-PO_4-H_2O$ system at $25^{\circ}C$ was estimated as $10.5{\pm}0.5$ through the theoretical consideration. The HAp powder dried at $80^{\circ}C$ showed a fine agglomerated particles with a size of 75 nm. The HAp powder calcined at $1,000^{\circ}C$ consisted of nearly homogeneous particles with a size of 450 nm. Even though the dried HAp particles consisted of agglomeration, mechanical properties were superior due to fine microstructure after sintering.

  • PDF

Effects of EDTA on morphology of hydroxyapatite prepared by hydrothermal method (수열합성법에 의해 합성된 수산화아파타이트 결정의 입자 형상에 관한 EDTA의 영향)

  • Choi, Bong-Seok;Kim, Dong-Hyun;Kim, Tae-Wan;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.75-81
    • /
    • 2011
  • Hydroxyapatite (HAP) crystals with hexagonal structure have been successfully synthesized by using EDTA(ethylene diamine tetraacetic acid) as chelate under hydrothermal condition. The as-prepared HAp powders were characterized by XRD and SEM. The XRD result indicated that the products were preferentially oriented along c-axis. The SEM photographs showed that the morphology of the HAp crystals was well controlled by the reaction parameters such as temperature, pH value, and the molar ratio of EDTA/Ca.

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip;Dey, Apurba;Pal, Umapada
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.295-307
    • /
    • 2016
  • The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.

A Study on the Preparation and Application of Calcium Phosphate Powder to Bonechina Clay (본차이나 소지용 인산칼슘 분말의 제조 및 적용에 관한 연구)

  • Kim, Yun-Sung;Kim, Juny;Yoo, Jung-Whan;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.921-928
    • /
    • 2004
  • Calcium phosphate powders have been prepared by using $Ca(OH)_2\;and\;H_{3}PO_4$ solution under various conditions such as pH, calcination temperature, and reaction time. ${\beta}-TCP({\beta}-tricalcium phosphate)$and HAp(hydroxyapatite) were synthesized at pH=5.21 and pH > 7.62, respectively. From XRD results, $Ca(OH)_2\;and\;H_{3}PO_4$ solution reacted quickly to form HAp, which was structurally stable up to 16h. Calcination temperature having good crystallinity is revealed to be at $1200^{\circ}C$. SEM analysis showed that ${\beta}-TCP$ and HAp with needle type were synthesized at pH 5.21 and pH 7.62, respectively. However, at pH 9.16, tiny and homogeneous HAp having sphere was prepared and rearranged to show needle morphology. HAp synthesized at pH 9.16 was utilized as bonechina body and calcined. The sample was analyzed its crystallinity, water absorbtion, color, and shape to check physical properties.

The Effect of Chitosan on Hydroxyapatite Precipitation

  • Hatim, Zineb;Bakasse, Mina;Kheribech, Abdelmoula;Abida, Fatima;Bourouisse, Abderrahim
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.484-485
    • /
    • 2006
  • The process of coprecipitation of biocomposite hydroxyapatite/chitosan from aqueous solution at low temperature in alkali environnement was examined. We have shown that initially we have the formation of amorphous octocalcium phosphates $(Ca_8(HPO_4)(PO_4)_5,\;nH_2O:\;OCP)$ and the transferring from OCP to amorphous calcium phosphate $(Ca_9(PO_4)_3,\;nH_2O:\;TCP)$, and then from TCP to calcium-deficient hydroxyapatite $(Ca_{10-X}\;(HPO_4)_X(PO_4)_{6-x}(OH)_{2-X}\;:\;ACP)$ and hydroxyapatite $(Ca_{10}(PO_4)_6(OH)_2\;:\;HAP)$. The transformation of ACP to HAP was inhibited in the presence of chitosan. The result suggests that there is an affinity binding between ACP and chitosan and subsequently blocking the active growth site of ACP.

  • PDF

Microstructure Control of HAp Based Artificial Bone Using Multi-extrusion Process

  • Jang, Dong-Woo;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Porous hydroxyapatite has been widely used as clinical implanted material. However, it has poor mechanical properties. To increase the strength as well as the biocompatibility of the porous HAp based artificial bone, it was fabricated by multi-extrusion process. Hydroxyapatite and graphite powders were mixed separately with ethylene vinely acetate and steric acid by shear mixing process. Hydroxyapatite composites containing porous microstructure were fabricated by arranging it in the die and subject it to extrusion process. Burn-out and sintering processes were performed to remove the binder and graphite as well as increase the density. The external and internal diameter of cylindrical hollow core were approximately 10.4 mm and 4.2 mm, respectively. The size of pore channel designed to increase bone growth (osteconduction) was around 150 ${\mu}m$ in diameter. X-ray diffraction analysis and SEM observation were performed to identity the crystal structure and the detailed microstructure, respectively.

  • PDF