• Title/Summary/Keyword: hydrophobicity (hydrophilicity)

Search Result 79, Processing Time 0.031 seconds

An Experimental Study on the Effects of Contact Angle on a Falling Liquid Film (접촉각이 유하액막 특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Kyung-Hee;Kang, Byung-Ha;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.867-873
    • /
    • 2006
  • Vertical falling liquid film is extensively used in heat and mass transfer processes of many applications, such as evaporative coolers, cooling towers, and absorption chillers. In such cases, it is required that the falling film spreads widely in the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film or hydrophilic surface treatment affects the fluid physical properties of the film. Surfactant addition not only decreases contact angle between the liquid and solid surface but also changes the surface from hydrophobicity to hydrophilicity. In this study, the effects of contact angle on falling film characteristics over a vertical surface have been investigated experimentally. The contact angle is varied either by an addition of surfactant to the liquid or by hydrophilic surface treatment. It is found that the wetted area is increased and film thickness is decreased by the hydrophilic treatment as compared with those of other surfaces. With this hydrophilic treatment, the falling liquid film spreads out widely in the surface. As surfactant concentration is increased, wetted area is also increased and the film thickness is substantially decreased.

Prediction of Protein-Protein Interactions from Sequences using a Correlation Matrix of the Physicochemical Properties of Amino Acids

  • Kopoin, Charlemagne N'Diffon;Atiampo, Armand Kodjo;N'Guessan, Behou Gerard;Babri, Michel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.41-47
    • /
    • 2021
  • Detection of protein-protein interactions (PPIs) remains essential for the development of therapies against diseases. Experimental studies to detect PPI are longer and more expensive. Today, with the availability of PPI data, several computer models for predicting PPIs have been proposed. One of the big challenges in this task is feature extraction. The relevance of the information extracted by some extraction techniques remains limited. In this work, we first propose an extraction method based on correlation relationships between the physicochemical properties of amino acids. The proposed method uses a correlation matrix obtained from the hydrophobicity and hydrophilicity properties that it then integrates in the calculation of the bigram. Then, we use the SVM algorithm to detect the presence of an interaction between 2 given proteins. Experimental results show that the proposed method obtains better performances compared to the approaches in the literature. It obtains performances of 94.75% in accuracy, 95.12% in precision and 96% in sensitivity on human HPRD protein data.

A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method (양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구)

  • Kim, Jisoo;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.290-299
    • /
    • 2022
  • Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.

Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium (Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향)

  • Yeji Choi;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.

Surface Modification of Poly(tetrafluoroethylene) (PTFE) Membranes (PTFE 막의 표면 개질 방법)

  • Jun Kyu Jang;Chaewon Youn;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this review, surface modification methods of hydrophobic poly(tetrafluoroethylene) (PTFE) membrane are introduced and their improved hydrophilicity results are discussed. Fluoropolymer based membranes, represented by PTFE membranes have been used in various membrane separation processes, including membrane distillation, oil separation and gas separation. However, despite excellent physical properties such as chemical resistance, heat resistance and high mechanical strength, the strong hydrophobicity of PTFE membrane surface has become a challenging factor in expanding its membrane separation application. To improve the separation performance of PTFE membranes, wet chemical, hydrophilic coating, plasma, irradiation and atomic layer deposition are applied, modifying the surface property of PTFE membranes while maintaining their inherent properties.

Synthesis and characterization of hydrophobic and hydrophilic cellulose derivative by esterification (친수성과 소수성을 동시에 가지는 아세틸화 셀룰로스 에테르의 합성 및 특성 평가)

  • Kim, Taehong;Lee, Sangku;Son, Byunghee;Paik, Hyun-Jjong;Yoon, Sanghyeon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • Acetylated Cellulose Ether (ACE), cellulose-based amphiphilic polymer with hydrophilic and hydrophobic, was synthesized and investigated in terms of its solubility and wettability for organic solvents and water. Acetyl group was substituted to the cellulose ether in a hydrophilic polymer by esterification. As a result of FT-IR, the peak corresponding to the hydroxyl group decreased and carboxyl acid peak increased with increasing reaction time and temperature, which signified the increase in the degree of acetylation of the ACE. There were similar thermal decomposition behaviors before and after esterification reaction until $800^{\circ}C$ so that the reaction occurred without significant structural changes of cellulose backbones. The solubility parameter of the ACE had a range of 18.5~26.4, and its viscosity and turbidity were controlled according to the solubility parameter of organic solvents. The ACE showed the hydrophilicity because the contact angle of the ACE was higher than the cellulose ether. These results confirmed that the ACE had the hydrophobicity and hydrophilicity due to the ether which was glucosidic bonding between the glucose units and un-reacted hydroxyl functional groups in the ACE.

Characterization of Fluorocarbon Thin Films deposited by PECVD (PECVD로 증착된 불화 유기박막의 특성 평가)

  • 김준성;김태곤;박진구;신형재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.31-36
    • /
    • 2001
  • Teflon-like fluorocarbon thin film was deposited by using difluoromethane$(CH_2F_2$) added with Ar, $O_2$, and $CH_4$ on Si, $SiO_2$, TEOS, and Al substrate. The deposited thin film was characterized by static contact angles for measuring hydrophobicity in various additive gas ratio. temperature, and working pressure. In case of addition with Ar, the static contact angles decreased as additive gas ratio and power increased. But the static contact angles increased as working pressure increased. Specially, super-hydrophobic surface was obtained using the powder-like fluorocarbon thin film above 2 Torr. Added with $O_2$, the static contact angles decreased as the $O_2$ ratio and working pressure increased. And the static contact angles did not change in 100W, but hydrophilic surface was obtained at 200W. In case of addition of CE$_4$, static contact angles dramatically increased in $CH_4/CH_2F_2$ ratio 5. And continuous static contact angles obtained above ratio 5. As compare with previous experiments by thermal evaporation, the fluorocarbon thin film by plasma polymerization was obtained very low hysteresis. This results shows more homogenous surface by plasma polymerization than thermal evaporation process.

  • PDF

Media Characteristics of PVA-derivative Hydrogels Using a CGA Technique (CGA 제조기법을 응용한 PVA 하이드로젤의 담체 특성)

  • Yoon, Mi-Hae; Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.299-308
    • /
    • 2009
  • We manufactured PVA-derived hydrogels using a foam generation technique that has been widely used to prepare colloidal gas aphrons(CGA). These gels were differentiated to the conventional gels such as for medical or pharmaceutical applications, which have tiny pores and some crystalline structure. Rather these should be used in de-pollution devices or adhesion of cells or biomolecules. The crosslinkers used in this work were amino acid, organic acid, sugars and lipids(vitamins). The structures of the gels were observed in a scanned electron microscope. Amino acids gels showed remarkably higher swelling ratios probably because their typical functional groups help constructing a highly crosslinked network along with hydrogen bonds. Boric acid and starch would catalyze dehydration while structuring to result in much lower water content and accordingly high gel content, leading to less elastic, hard gels. Bulky materials such as ascorbic acid or starch produced, in general, large pores in the matrices and also nicotinamide, having large hydrophobic patches was likely to enlarge pore size of its gels as well since the hydrophobicity would expel water molecules, thus leading to reduced swelling. Hydrophilicity(or hydrophobicity), functional groups which are involved in the reaction or physical linkage, and bulkiness of crosslinkers were found to be more critical to gel's cross linking structure and its density than molecular weights that seemed to be closely related to pore sizes. Microscopic observation revealed that pores were more or less homogeneous and their average sizes were $20{\mu}m$ for methionine, $10-15{\mu}m$ for citric acid, $50-70{\mu}m$ for L-ascorbic acid, $30-40{\mu}m$ for nicotinamide, and $70-80{\mu}m$ for starch. Also a sensory test showed that amino acid and glucose gels were more elastic meanwhile acid and nicotinamide gels turned out to be brittle or non-elastic at their high concentrations. The elasticity of a gel was reasonably correlated with its water content or swelling ratio. In addition, the PVA gel including 20% ascorbic acid showed fair ability of cell adherence as 0.257mg/g-hydrogel and completely degraded phenanthrene(10 mM) in 240 h.

Water Repellent Characteristics of Cement Paste Added Silane/siloxane-based Emulsion Water Repellent (실란/실록산계 에멀전 발수제를 혼입한 시멘트 페이스트의 발수특성)

  • Kang, Suk-Pyo;Hong, Seong-Uk;Kang, Hye-Ju;Yang, Seung Hyeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • The aim of this paper is to improve durability of cement paste by imparting hydrophobicity to the surface and sphere of cement-based materials. A cement paste mixed with a silane/siloxane-based water repellent, and the initial hydration performance, flow performance, and age-specific compressive strength were measured. In addition, the water contact angle, SEM, and XRD before and after surface polishing were measured. When 0.5% of the silane/siloxane-based water repellent was mixed into the cement paste, the compressive strength increased, but the compressive strength decreased as the mixing amount increased by 1.5% and 3.0%. When a silane/siloxane water repellent was incorporated into the cement paste, the hydrophilicity was improved and the contact angle was increased due to hydrophobicity. In addition, the contact angle after surface polishing was found to be larger than the contact angle before surface polishing.

A Study on the Curing Characteristics and the Synthesis of Polyurethane Acrylate Hybrid Emulsion (폴리우레탄 아크릴레이트 하이브리드 에멀젼의 합성 및 경화특성에 관한 연구)

  • Han, Sang-Hoon;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.132-137
    • /
    • 2006
  • Polyurethane acrylate hybrid emulsions were prepared by seeded polymerization techniques. In the synthesis, seeded polyurethane dispersion containing a carboxylic group was used to endow hydrophilicity to the hybrid emulsion and various acrylates such as methyl methacrylate (MMA), 2-hydroxy ethylmethacrylate (2-HEMA), n-butyl acrylate (n-BA) and acrylic acid (AAc) were used to endow hydrophobicity. The particle size and distribution of various emulsion particles such as polyurethane acrylate hybrid emulsion, polyurethane dispersion homopolymer, acrylate emulsion, and physical blending emulsion were measured by a particle size analyzer. The average particle size of hybrid emulsion was greater than physical blending emulsion. And tensile strength, 100% modulus, elongation, and swelling properties of the polyurethane acrylate hybrid emulsion were studied and compared with those of polyurethane homopolymer, acrylate emulsion, and physically blended compositor, respectively. To improve chemical and physical resistance, this paper review a melamine hardener and compares it for effects on the physical properties of cured coating.