• Title/Summary/Keyword: hydrophobic silica

Search Result 113, Processing Time 0.031 seconds

Fabrication of a Superhydrophobic Surface with Adjustable Hydrophobicity and Adhesivity Based on a Silica Nanotube Array

  • Yu, Jae-Eun;Son, Sang-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3378-3382
    • /
    • 2012
  • A superhydrophobic surface with a water contact angle > $150^{\circ}$ has attracted great interest from both fundamental and practical aspects. In this study, we demonstrated that hydrophobicity of a silica nanotube (SNT) array can be easily controlled by the SNT aspect ratio. In addition, the adhesive and anti-adhesive properties were controlled without modifying the hydrophobic surface. Various silica structures on a polydimethylsiloxane substrate were prepared using the desired alumina template. Bundle-arrayed and bowl-arrayed silica surfaces exhibited extraordinary superhydrophobicity due to the large frontal surface area and hierarchical micro/nanostructure. As the strategy used in this study is biocompatible and a wide range of hydrophobicities are capable of being controlled by the SNT aspect ratio, a hydrophobic surface composed of an SNT array could be an attractive candidate for bioapplications, such as cell and protein chips.

Effect of Filler on the Physical Properties of Silicone Rubber Impression Material (실리콘 고무인상재의 물성에 미치는 충전제의 영향)

  • Chung, Kyung-Ho;Kang, Seung-Kyung
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • In this study, the wettability and mechanical properties of silicone rubber impression material were studied by using precipitated silica and fumed silica with different particle size and polarity (hydrophilic/hydrophobic). Curing time of impression material depended on the particle size of fumed silica. The curing time delayed about 9 minutes by using A300, which was the fumed silica with the smallest particle size among the silica used in this study. Wettability of rubber impression material improved with the introduction oi hydrophobic fumed silica(R972). Also, the optimum flow and mechanical properties could be obtained by using blended silica with the 90: 10 ratio of precipitated and fumed silica.

Protein-silica Interaction in Silica-based Gel Filtration Chromatography (Silica-based Gel Filtration 크로마토그래피에서의 단백질-실리카 상호작용)

  • Choi, Jung-Kap;Yoo, Gyurng-Soo
    • YAKHAK HOEJI
    • /
    • v.35 no.6
    • /
    • pp.461-465
    • /
    • 1991
  • Silica-based gel filtration chromatography has been used to characterize molecular weight of proteins. However, the molecular weight measured by this method was distorted by protein-silica interactions like hydrophobic and electrostatic forces. Therefore, we characterized protein-silica interaction using two forms of phytochrome (124 kDa) having different hydrophobicity and surface charge. PH and ionic strength affected the retention time of phytochrome suggesting that electrostatic force is the major interaction between protein and silica surface.

  • PDF

Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process

  • Mahadik, D.B.;Jung, Hae-Noo-Ree;Lee, Yoon Kwang;Lee, Kyu-Yeon;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • The flexible and superhydrophobic properties of silica aerogels are extremely important material for thermal insulation and oil spill cleanup applications for their long-term use. Flexible silica aerogels were synthesized by using a two-step sol-gel process with precursors, methyltrimethoxysilane (MTMS) followed by supercritical drying. Silica aerogels were prepared at different molar ratio of methanol to MTMS (M). It was observed that the silica aerogels prepared at M=28 were monolithic but inelastic in nature, however, for M=35, the obtained aerogels were monolithic, elastic in nature with less shrinkage. The microstructural studies were carried out using scanning electron microscopy and surface area measurements. The hydrophobicity was confirmed by Fourier transform Infrared spectroscopy and water contact angle measurements. The detailed insight mechanism for flexible nature of silica aerogels and hydrophobic behavior were studied.

Preparation of Talc-Silica Composites by Controlling Surface Charge Behavior (표면전하 거동 조절을 이용한 탈크-실리카 복합체의 제조)

  • Yun, Ki-Hoon;Park, Min-Gyeong;Moon, Young-Jin;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.116-124
    • /
    • 2017
  • A plate-type inorganic pigment complex was manufactured in a manner that treats the surface of the complex by adjusting zeta potential between talc, an inorganic pigment used as a material for color cosmetics, and hydrophobic silica. Talc, which is usually used in the prescription of color cosmetics, is a plate-type, white-colored inorganic substance with good application and spreadability to skin. Furthermore, it features excellent dispersibility and extensibility as well as outstanding heat tolerance, light stability, and chemical resistance. In general, silica contributes to durable makeup and stabilized formulation. This paper covers a process of manufacturing an inorganic pigment complex, where hydrophobic silica was applied to the surface of talc by using differences in zeta potential after the surface charges of talc and hydrophobic silica had been adjusted with cationic and anionic surfactants, respectively. The resulting inorganic pigment complex was composed of talc whose surface is coated hydrophobic silica to the thickness of $1{\mu}m$ or less, which developed an effective hydrophobic property. Zeta potential was measured to analyze the surface charge of an inorganic pigment, and FT-IR, used to check the functional group of a surfactant, was applied to treat the surface of the pigment. The surface of the inorganic pigment complex was observed employing SEM, EDS, and FIB, while its structure was confirmed with XRD and FT-IR.

Transparent and Superhydrophobic Films Prepared by Polydimethylsiloxane-Coated Silica nanoparticles

  • Park, Eun Ji;Sim, Jong Ki;Jeong, Myung-Geun;Kim, Young Dok;Lim, Dong Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.218-218
    • /
    • 2013
  • We report a simple and cost-effective method to fabricate transparent superhydrophobic surface on various substrates. The surface was fabricated by coating hydrophobic PDMS (polydimethylsiloxane) film on the silica nanoparticle and subsequent fixing of the hydrophobic silica nanoparticles onto substrates. The water contact angle for the prepared surface was determined to be over $150^{\circ}$, whichindicates that the surface is highly repellent to water. The hierarchical structure and roughness of the surface were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Additionally, transparency of the prepared surface was measured with UV-VIS spectrometer. The transmittance of the superhydrophobic surface was ~80%, which is lower than that without PDMS-coated silica by only 5 to 10%. It is also notable that the superhydrophobic surface fully recovers its original transmittance after self-cleaning process. Also the PDMS coating is stable under a wide range of pH conditions, UV radiation and salinity conditions, which is essential for the practical use. Moreover, our fabrication method is applicable in large scale production.

  • PDF

Study on the Synthesis of Hydrophobic Silica and Its Application for Gas Barrier Film (소수성 실리카의 제조 및 가스차단성 필름으로의 응용에 관한 연구)

  • Yang, Kyeong Min;Chang, Mi Jung;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.554-558
    • /
    • 2017
  • In order to achieve a hydrophobic surface of silica, we reacted silica nanoparticles with hexamethyldisilazane (HMDS) under various reaction conditions. Modification of the surface of silica with organic materials was confirmed by the thermogravity and elemental analysis. The modified silica displayed nearly the same morphology as to the pristine silica. The reaction of 20 g of HMDS with 1 g of silica in decalin at $200^{\circ}C$ for 6 hours was found to be the optimum reaction condition in terms of the dispersity in toluene and the surface roughness of composite films. Oxygen permeation studies of the composite film demonstrated that the modified silica enhanced a gas barrier performance.

Preparation of Copoly(styrene/butyl methacrylate) Beads and Composite Particles containing Carbon Black with Hydrophobic Silica as a Stabilizer in Aqueous Solution (수용액에서의 소수성실리카를 이용한 스티렌/부틸메타크릴레이트 입자 및 카본블랙을 함유한 복합체 입자의 합성)

  • Chung, Kyung-Ho;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • A suspension copolymerization of styrene and butyl methacrylate (BMA) in the aqueous phase was conducted at a selected temperature between 65 and $95^{\circ}C$. Hydrophobic silica was selected as a stabilizer and azobisisobutyronitrile (AIBN) as an initiator. Optimum dispersion of silica in water was obtained at pH 10 while polymerization reaction was run at pH 7. TGA and EDS measurements revealed that 90% of silica functioned as a stabilizer and 10% were incorporated into polymeric particles. Average particle diameter decreased with increasing amounts of stabilizer. Molecular weights displayed an increase when the stabilizer concentration reached 1.67 wt%. An increase in the initiator concentration and/or reaction temperature raised the reaction rate but decreased molecular weights. Particle diameter was nearly independent of the initiator concentration and reaction temperature. An increase in the BMA proportion decreased the glass transition temperature and increased the particle diameter with irregularity in shape. Incorporation of carbon black into the particles composed of styrene and BMA prolonged the reaction time before reaching completion. We have confirmed that a suspension copolymerization of styrene and BMA with hydrophobic silica as a stabilizer can produce spherical composite particles with $1-30{\mu}m$ in diameter containing carbon black.

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

The Study on the Preparation of the Silica Particles by the Reactive Crystallization (반응 결정화에 의한 실리카 미립자 합성에 관한 연구)

  • Kim, Jun Ho;Lee, Chang Hwan;Lee, Choul Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.12-15
    • /
    • 2006
  • The purpose of this study was to investigate the effect of reaction conditions, solvents, and surfactants on the average size and size distribution of silica particles in preparing silica fine powders by sodium silicate. Silica fine particles were synthesized by varying kinds of solvents and surfactants using the emulsion method. Span 20, Span 40, Span 60, and Span 80 were used as nonionic surfactants, Dispersing solvents were n-Hexane, n-Heptane, iso-Octane, and n-Decane of the alkane group. In these experiments, it was known that the optimum dispersion stirring time to form the emulsion of the constant size was around 6 min. The mean sizes of silica particles, at a variety of the dispersion stirring speeds, decreased as the dispersion stirring speed increased. Also, in the case of the solvents, the size of the formed silica particles decreased when the molecular weight of the solvent increased. Lastly, in the case of the surfactants, the mean size of silica particles increased as the hydrophobic lipophilic balance (HLB) value of the surfactant decreased.