• Title/Summary/Keyword: hydrophobic membrane

Search Result 320, Processing Time 0.029 seconds

Recovery of water and contaminants from cooling tower plume

  • Macedonio, Francesca;Frappa, Mirko;Brunetti, Adele;Barbieri, Giuseppe;Drioli, Enrico
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.222-229
    • /
    • 2020
  • Membrane assisted condenser is an innovative membrane operation that exploits the hydrophobic nature of microporous membranes to promote water vapor condensation and recovery. It can be used for water and chemicals recovery from waste gaseous streams. In this work, the testing of membrane condenser for water and ammonia recovery from synthetic streams (i.e., a saturated air stream with ammonia) simulating the plume of cooling tower is illustrated. The modeling of the process was carried out for predicting the membrane-based process performance and for identifying the minimum operating conditions for effectively recovering liquid water. The experimental data were compared with the results achieved through the simulations showing good agreement and confirming the validity of the model. It was found that the recovery of water can be increased growing the temperature difference between the plume and the membrane module (DT), the relative humidity of the plume (RHplume) and the feed flow rate on membrane area ratio. Moreover, the concentration of NH3 in the recovered liquid water increased with the growing DT, at increasing NH3 concentration in the fed gaseous stream and at growing relative humidity of the feed.

Permeate Flux Analysis of Direct Contact Membrane Distillation (DCMD) and Sweep Gas Membrane Distillation (SGMD) (직접접촉식과 동반기체식 막증류 공정의 투과수 변화에 따른 비교해석)

  • Eum, Su-Hwan;Kim, Albert S.;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.236-246
    • /
    • 2011
  • In this study, we used prepared a cylindrical module consisting 100 hollow fibers of commercialized (hydrophobic) polyethylene membrane of $0.4{\mu}m$ pore size and systematically studied performance of direct contact membrane distillation (DCMD) and sweep gas membrane distillation (SGMD) in terms of variation of permeate flux and salt rejection with respect to temperature drop across the membrane, salt concentrations in feed, and flow rates of cooling water and sweep gas. SGMD was regarded as DCMD with a sweep gas layer between permeate-side membrane surface and cooling water. Sweep gas flow decreases the permeate flux from that of DCMD by providing an additional gas-layer resistance. We compared DCMD and SGMD performance by using mass balance with a fitting parameter (${\omega}$), indicating fraction of permeate flow rate.

Synthesis and Characterization of Multi-Block Sulfonated Poly (Arylene Ether Sulfone) Polymer Membrane with Different Hydrophilic Moieties for PEMFC (서로 다른 친수성구조를 가지는 고분자전해질 연료전지용 멀티블록형 술폰산화 폴리아릴렌에테르술폰 전해질막의 합성 및 특성 분석)

  • Yuk, Jinok;Lee, Sojeong;Yang, Tae-Hyun;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • Multi-block sulfonated poly(arylene ether sulfone) (SPAES) copolymer was synthesized via nucleophilic aromatic substitution reaction for proton exchange membrane fuel cell application. After synthesizing the hydrophilic and hydrophobic precursor oligomers having different end-groups (F-terminated or OH-terminated), the effect of end group on the molecular weight was investigated. Hydrophilic oligomers with hydroquinone showed better performance as fuel cell membranes. SPAES membranes showed comparable proton conductivity to that of Nafion at $80^{\circ}C$ and above 70% RH. In particular, SPAES 9 with hydroquinone showed higher proton conductivity than SPAES 10 in the whole RH range studied. Increased local concentration of sulfonic acids within hydrophilic block might develop the hydrophilic-hydrophobic phase separation in the block copolymers.

Energy Transfer of Methylene Blue on the Purple Membrane Incorporated into $L-{\alpha}-lecithin$ Vesicle by Photochemical Reaction Differential Scanning Calorimetry (Purple Membrane으로 재구성된 $L-{\alpha}-lecithin$ Vesicle에서 Photochemical Reaction Differential Scanning Calorimetry에 의한 Methylene Blue의 에너지 전달)

  • Kim, Ki-Jun;Sung, Ki-Chun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.127-136
    • /
    • 1996
  • Thermograms of methylene blue(MB) in $L-{\alpha}-lecithin$ vesicle and incorporated purple membrane vesicle(InPM) systems have been studied by photochemical reaction differential scanning calorimetry at $25{\sim}55^{\circ}C$. Phase transition temperatures of lecithin vesicle, purple membrane(PM), and InPM were found to be independent of illumination of light(436nm) at $39{\sim}40^{\circ}C$, but endothermic phase transition was found in InPM vesicle. In MB-InPM system, endothermic phase transition was found on unillumination of light at $40{\sim}42^{\circ}C$, but exothermic phase transition was found on steady illumination of light at $48{\sim}52^{\circ}C$. It was estimated that the light energy absorbed from MB on vesicular surface was transferred to PM, and the transferred energy was redistributed to hydrophobic site of membrane. Therefore, the exothermic phase transition was measured at high temperature because of the increased hydrophobicity of acyl chain.

A Study on the Thermal Characteristics of Vacuum Membrane Distillation Module (VMD 모듈의 열성능 특성 연구)

  • Joo, Hong-Jin;Yang, Yong-Woo;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.23-31
    • /
    • 2014
  • This study was accomplished to get the foundation design data of VMD(Vacuum Membrane Distillation) system for Solar Thermal VMD plant. VMD experiment was designed to evaluate thermal performance of VMD using PVDF(polyvinylidene fluoride) hollow fiber hydrophobic membranes. The total membrane surface area in a VMD module is $5.3m^2$. Experimental equipments to evaluate VMD system consists of various parts such as VMD module, heat exchanger, heater, storage tank, pump, flow meter, micro filter. The experimental conditions to evaluate VMD module were salt concentration, temperature, flow rate of feed sea water. Salt concentration of feed water were used by aqueous NaCl solutions of 25g/l, 35g/l and 45g/l concentration. As a result, increase in permeate flux of VMD module is due to the increasing feed water temperature and feed water flow rate. Also, decrease in permeate flux of VMD module is due to increasing salinity of feed water. VMD module required about 590 kWh/day of heating energy to produce $1m^3/day$ of fresh water.

PVDF/h-BN hybrid membranes and their application in desalination through AGMD

  • Moradi, Rasoul;Shariaty-Niassar, Mojtaba;Pourkhalili, Nazila;Mehrizadeh, Masoud;Niknafs, Hassan
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.221-231
    • /
    • 2018
  • A new procedure to produce poly(vinylidene fluoride)/boron nitride hybrid membrane is presented for application in membrane distillation (MD) process. The influence of hexagonal boron nitride (h-BN) incorporation on the performance of the polymeric membranes is studied through the present investigation. For this aim, h-BN nanopowders were successfully synthesized using the simple chemical vapor deposition (CVD) route and subsequent solvent treatments. The resulting h-BN nanosheets were blended with poly(vinylidene fluoride) (PVDF) solution. Then, the prepared composite solution was subjected to phase inversion process to obtain PVDF/h-BN hybrid membranes. Various examinations such as scanning electron microscopy (SEM), wettability, permeation flux, mechanical strength and liquid entry pressure (LEP) measurements are performed to evaluate the prepared membrane. Moreover, Air gap membrane distillation (AGMD) experiments were carried out to investigate the salt rejection performance and the durability of membranes. The results show that our hybrid PVDF/h-BN membrane presents higher water permeation flux (${\sim}18kg/m^2h$) compared to pristine PVDF membrane. In addition, the experimental data confirms that the prepared nanocomposite membrane is hydrophobic (water contact angle: ${\sim}103^{\circ}$), has a porous skin layer (>85%), as well competitive fouling resistance and operational durability. Furthermore, the total salt rejection efficiency was obtained for PVDF/h-BN membrane. The results prove that the novel PVDF/h-BN membrane can be easily synthesized and applied in MD process for salt rejection purposes.

Synthesis and Evaluation of Polymer for Crosslinking Cells

  • Ito, Michiko;Taguchi, Tetsushi;Kobayashi, Hisatoshi;Tateishi, Tetsuya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.266-266
    • /
    • 2006
  • The cell spheroid (multicellular mass) is enhanced cell functions because of the cell-cell interaction compared with the individual cell. The objective of this study is synthesis, characterization and evaluation of novel crosslinkers to form spheroid in a short time. Our approach to bridge cells is based on the crosslinking of the cell membrane via the hydrophobic interaction. The crosslinker was prepared by the reaction between ethylenediamine and poly(ethylene glycol) (PEG) derivative with oleyl group as hydrophobic group at the terminal group. The product was characterized with gel permeation chromatography (GPC) and FT-IR. Furthermore, cell culture experiment was also performed to confirm spheroid formation. The function of prepared spheroids was evaluated.

  • PDF

Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles

  • Baek, Seung Bin;Lee, Hyeong Ju;Lee, Hee Cheon;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.743-748
    • /
    • 2013
  • The temperature dependence of the partition coefficients of a neuropeptide, substance P (SP), in isotropic acidic bicelles was investigated by using a pulsed field gradient nuclear magnetic resonance diffusion technique. The addition of negatively charged dimyristoylphosphatidylserine to the neutral bicelle changed the SP partitioning a little, which implies that the hydrophobic interaction between the hydrophobic residues of SP and the acyl chains of lipid molecules is the major interaction while the electrostatic interaction is minor in SP binding in a lipid membrane. From the temperature dependence of the partition coefficients, thermodynamic functions were calculated. The partitioning of SP into the acidic bicelles is enthalpy-driven, as it is for small unilamellar vesicles and dodecylphosphocholine micelles, while peptide partitioning into a large unilamellar vesicle is entropy-driven. This may mean that the size of lipid membranes is a more important factor for peptide binding than the surface curvature and surface charge density.

Gene Expression of Surfactant-Associated Proteins (Surfactant-Associated Proteins의 유전인자 발현)

  • Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 1991
  • Pulmonary surfactant is a lipoprotein complex composed primarily of phospholipid and lungspecific apoproteins that reduces surface tension in the alveolus and maintains alveolar stability at low lung volume. Three families of lung-specific apoproteins have been described: SP-A, a glycoprotein with a reduced molecular weight of 28~36 KDa. SP-B a hydrophobic protein with a nonreduced molecular weight of 18 KDa, and SP-C a hydrophobic protein with a non-reduced molecular weight of 5~8 KDa. Surfactant proteins have important roles in regulating surfactant metabolism as well as in determining its physical properties. The synthesis of the active surfactant peptides appears to be modulated by system with considerable complexity, including numerous levels of regulation such as cell-specific, hormonal and developmental controls. Endotoxin appears to alter surfactant protein mRNAs differentially. It is hoped that the elucidation of the factors controlling the synthesis and metabolism of the surfactant proteins will aid in understanding the pathogenesis of hyaline membrane disease and offer new avenues for the therapy and diagnosis of ther pulmonary disorders as well.

  • PDF

Graft copolymerization of GMA and EDMA on PVDF to hydrophilic surface modification by electron beam irradiation

  • Lim, Seung Joo;Shin, In Hwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.373-380
    • /
    • 2020
  • This study was carried out to convert the hydrophobic characteristics of PVDF to hydrophilic. Poly(-vinylidene fluorine) (PVDF) was grafted by electron beam irradiation and sulfonated. The grafting degree of modified PVDF increased with the monomer concentration, but not the conversion degree. From the results of FTIR and XPS, it was shown that the amount of converted sulfur increased with the grafting degree. The radiation-induced graft polymerization led to decrease fluorine from 35.7% to 21.3%. Meanwhile, the oxygen and sulfur content increased up to 8.1% and 3.2%. The pore size of modified membranes was shrunken and the roughness sharply decreased after irradiation. The ion exchange capacity and contact angle were investigated to show the characteristics of PVDF. The enhanced ion exchange capacity and lower contact angle of modified PVDF showed that the hydrophilicity played a role in determining membrane fouling. Electron beam irradiation successfully modified the hydrophobic characteristics of PVDF to hydrophilic.