• 제목/요약/키워드: hydrophilicity and hydrophobicity

검색결과 80건 처리시간 0.033초

Soluble Expression of Recombinant Olive Flounder Hepcidin I Using a Novel Secretion Enhancer

  • Lee, Sang Jun;Park, In Suk;Han, Yun Hee;Kim, Young Ok;Reeves, Peter R.
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.140-145
    • /
    • 2008
  • Expression of olive flounder hepcidin I (HepI) fused with truncated OmpA signal peptides ($OmpASP_{tr}$) as directional signals does not produce soluble fusion proteins. However, by inserting amino acid segments (xxx) varying in pI and hydrophobicity/hydrophilicity into a leader sequence containing a truncated OmpASP ($OmpASP_{tr}$) and a factor Xa cleavage site (Xa) [$OmpASP_{tr}{\mid}(xxx){\mid}Xa$], we were able in some cases to express soluble recombinant HepI. Soluble expression of the recombinant protein strongly correlated with (xxx) insertions of high pI and hydrophilicity. Therefore, we modified the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ sequence by inserting Arg and Lys into (xxx) to increase the hydrophilicity of the signal peptide region. These modifications enhanced the expression of soluble recombinant HepI. Hydropathic profile analysis of the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ HepI fusion proteins revealed that the transmembrane-like domains derived from the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ sequence were larger than the internal positively charged domain native to HepI. It should therefore be possible to overcome the obstacle of internal positively charged domains to obtain soluble expression of recombinant proteins by monitoring the hydrophilicity and hydropathic profile of the signal peptide region using a computer program.

Wettability control in C-SiOx film formed by plasma polymerization of HMDSO/$O_2$ mixture

  • Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.328-328
    • /
    • 2011
  • Wetting phenomena have been heavily studied for industrial and academic researches especially tuning the wettability between hydrophilicity and hydrophobicity. Wicking through the surface texture is shown on superhydrophilic surface while rolling (or dewetting) on the patterns of superhydrophobic surface. These wetting phenomena are known to be affected by surface wettability determined with physical surface patterns as well as chemical composition of surface layer. In this research, we introduce a method to control the wettability of a thin C-SiOx film from hydrophobic to hydrophilic using a mixture gas of HMDSO/$O_2$ by plasma polymerization with rf-CVD (radio frequency-Chemical Vapor Deposition). Wettability was finely controlled by changing the ratio of HMDSO/$O_2$. Hydrophilicity increased as the ratio decreased, while hydrophobicity was enhanced by the ratio. Moreover, fine control from superhydrophilicity to superhydrophobicity was achieved by C-SiOx coating on the Si wafer with prepatterns of submicron-sized pillar array formed by $CF_4$ plasma etching.

  • PDF

실리카 에어로겔의 표면 개질 (Surface Modification of Silica Aerogels)

  • 현상훈;이찬호;김동준
    • 한국세라믹학회지
    • /
    • 제33권12호
    • /
    • pp.1319-1324
    • /
    • 1996
  • Silica aerogels were synthesis by the sol-gel-supercritical drying process using isopropanol as a solvent. Effets of the heat-treatment and the surface modification through propoxylation on the structural reinforcement as well as the surface hydrophobic/hydrophilic characteristics of aerogels were investigated. Silica aerogels synthesized by supercritical drying were hydrophobic but aerogels heat-treated above 20$0^{\circ}C$ were transformed to be hydrophilic. In particular it was found that the skeletal structure of aerogels heat-treated at 50$0^{\circ}C$ was strong enough not to crack after adsorbing a large amount of water vapor. Hydrophilic aerogels modified by propoxylation at 28$0^{\circ}C$ for 20 h were reversed to the hydrophobic form. Transition between hydrophobicity and hydrophilicity was reversible. The hydrophobicvity and the hydrophilicity of silica aerogels were attributed to the Si-Oh bond and the nonpolar C-H bond groups of orgainc species respectively.

  • PDF

The properties of hydrophobic concrete prepared by biomimetic mineralization method

  • Huang, Chung-Ho;Fang, Hao-Yu;Zhang, Jue-Zhong
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.351-359
    • /
    • 2019
  • In this study, the calcium hydroxide, an inherent product of cement hydration, was treated using biomimetic carbonation method of incorporating stearic acid to generate the hydrophobic calcium carbonate on concrete surface. Carbonation reaction was carried out at various $CO_2$ pressure and temperatures and utilizing the Scanning Electron Microscope (SEM), chloride-ion penetration test apparatus, and compression test machine to investigate the hydrophobicity, durability, and mechanical properties of the synthesized products. Experimental results indicate that the calcium stearate may change the surface property of concrete from hydrophilicity to hydrophobicity. Increasing reaction temperature can change the particles from irregular shapes to needle-rod structures with increased shear stress and thus favorable to hydrophobicity and microhardness. The contact angle against water for the concrete surface was found to increase with increasing $CO_2$ pressure and temperature, and reached to an optimum value at around $90^{\circ}C$. The maximum static water contact angle of 128.7 degree was obtained at the $CO_2$ pressure of 2 atm and temperature of $90^{\circ}C$. It was also found that biomimetic carbonation increased the permeability, acid resistance and chloride-ion permeability of the concrete material. These unique results demonstrate that the needle-rod structures of $CaCO_3$ synthetized on concrete surface could enhance hydrophobicity, durability, and mechanical properties of concrete.

Effectiveness of Enzymatic Hydrolysis on Polyamide Fabric

  • Kim, Hye Rim;Seo, Hye Young;Song, Ah Reum
    • 한국의류학회지
    • /
    • 제37권7호
    • /
    • pp.962-971
    • /
    • 2013
  • We compared the effectiveness of amidase (amano acylase, AA) and an endopeptidase, (trypsin, TR) in modifying the hydrophobicity of polyamide fabric. We evaluated the number of amino groups released into the reaction mixture in order to optimize the treatment conditions. We found that a large number of amino groups were released into the reaction mixture due to the cleavage of amide bonds by AA hydrolysis; however, the TR hydrolysis exhibited a relatively lower activity compared to AA hydrolysis. In AA and TR hydrolysis, significant differences were observed in the K/S values and moisture regain. Amide bonds in polyamide fabric were hydrolyzed by AA hydrolysis effectively. Compared to TR, AA formed more hydrolysis product (amino groups) on the fabric surface. Thus, the hydrophobicity of polyamide fabric was modified using AA hydrolysis (as verified by the wettability test) without any deterioration of fiber strength.

반탄화 과정을 통한 바이오매스의 소수성 개선 연구 (A Study on the Improved the Hydrophobicity of Torrefied Biomass)

  • 정재성;김경민;정현준;김규보;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.49-57
    • /
    • 2019
  • Biomass, a carbon-neutral fuel, has great advantages because it can replace fossil fuels to reduce greenhouse gas emissions. However, due to its low density, high water content, and hydrophilicity, biomass has disadvantages for transportation and storage. To improve these properties, a pretreatment process of biomass is required. One of the various pre-treatment technologies, torrefacion, makes biomass similar to coal through low-temperature pyrolysis. In this study, torrefacion treatment was carried out at 200, 230, 250, 280, and $300^{\circ}C$ for wood pellet, empty fruit bunch (EFB) and kenaf, and the feasibility of replacing coal with fuel was examined. Hygroscopicity tests were conducted to analyze the hydrophobicity of biomass, and its chemical structure changes were investigated using Infrared spectrum analysis. It was confirmed that the hygroscopicity was decreased gradually as the torrefacion temperature increased according to the hygroscopicity tests. The hydrophilicity was reduced according to the pyrolysis of hemicellulose, cellulose, and lignin of biomass.

PCB 기판용 FRP 재료의 열화특성 (Degradation characteristics of the FRP material for using as a PCB substrate)

  • 박종관
    • 대한전자공학회논문지SD
    • /
    • 제41권12호
    • /
    • pp.1-6
    • /
    • 2004
  • 본 연구는 PCB 기판용 FRP 재료의 열화현상을 규명하기 위하여 열 및 방전에 의한 열화를 각각 모의하여 표면에서의 화학적, 정전적 상관관계를 조사하였다. 열 처리에 따른 시료의 특성변화는 $200^{\circ}C$ 까지는 표면의 소수화로 인하여 접촉각 및 표면전위가 증가하였다. XPS에 의한 분석결과 열처리에 따라 표면측쇄상 산소기의 이탈과 탄소쇄의 불포화 이중결합의 증가로 처리시료에서는 소수성이 증가하였다. 또한 열처리로 인해 착색현상이 발생되었고, 이러한 현상은 ether기에 의해 발생된다는 것을 확인하였다. 방전 처리된 시료의 접촉각 및 표면전위는 표면에 카르복실기 라디칼을 포함하는 다량의 측쇄화가 집중적으로 발생되어 처리시간에 따라 급격한 친수화가 진행되었다.

코로나-19 보호용 페이스 마스크에서의 액적 고속 충돌 거동 (Microdroplet Impact Dynamics at Very High Velocity on Face Masks for COVID-19 Protection)

  • 최재원;이동호;어지수;이동근;강전웅;지인서;김태영;홍지우
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.282-288
    • /
    • 2022
  • 코로나 팬데믹 시대에서 비말(respiratory droplet)을 통한 감염 및 확산을 막기 위해 마스크는 없어서는 안 될 생활 필수품이 되었다. 본 연구에서는 두 가지 다른 타입의 마스크(KF-94 마스크와 덴탈 마스크)가 비말 차단에 얼마나 효과적인지를 파악하기 위하여, i) 각각의 마스크를 구성하고 있는 필터의 젖음성(wettability) 특성을 분석하고, ii) 필터 표면에 빠른 속도로 충돌하는 미소 액적의 동적 거동 특성을 실험적으로 관찰하였다. 각 필터의 구성 재료에 따라 상반된 젖음성 특성, 소수성(hydrophobicity) 또는 친수성(hydrophilicity)을 보임을 확인하였다. 또한, 일정 체적을 갖는 미소 액적을 안정적으로 토출하는 공압 조건을 탐색하고 액적의 충돌 속도 변화에 따른 액적 충돌 거동 변화를 분석하였다. 마스크를 구성하고 있는 필터의 종류와 액적 충돌 속도에 따라 i) 필터를 통과하지 못하거나(no penetration), ii) 필터에 포획(capture)되거나, iii) 필터를 통과(penetration)하는 등의 다른 충돌 후 거동을 보임을 확인하였다. 이러한 결과들은 비말 차단용 마스크 디자인에 있어 매우 기본적이고 유용한 정보를 제공할 뿐만 아니라, 다양한 다공성 표면에서의 액적 거동에 대한 학문적 연구에도 도움이 될 것으로 판단된다.

Polyamide66/Polyphenylene 블렌드의 플라스마 표면처리를 통한 친수성 향상 (Hydrophilicity Improvement of Polyamide66/Polyphenylene Blends by Plasma Surface Treatment)

  • 지영연;김상식
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.391-396
    • /
    • 2006
  • 플라스마 표면처리는 접착력, 친수성, 소수성 등과 같은 고분자의 표면 특성을 개질시키기 위하여 사용되고 있다. 플라스마를 이용하여 표면을 처리하게 되면 고분자의 전체적인 물성은 유지한 채 표면의 특성만을 변화시키는 장점을 가지고 있다. 본 연구에서는 다양한 가스를 사용한 플라스마를 이용하여 상업용 Polyarlide66 (PA66) /polyphenylene(PPE) 고분자의 표면의 접착력 향상을 위해 표면 유기물 제거와 친수성으로 개질을 시도하였다. 플라스마 처리 공정 변수인 공정 파워, 처리 시간, 가스 종 들을 변화시키면서 표면을 개질하였으며 PASS/ PPE 고분자의 친수성 개질을 확인하기 위하여 접촉각 및 표면 자유에너지 변화를 측정하였다. 또한 유기물 제거를 FTIR 분석을 통하여 확인하였다. 플라스마를 이용한 표면처리 결과, 공정 파워 100 W, 처리 시간 2분, 아르곤/산소 공정가스에서 가장 낮은 접촉각(73도에서 14도)과 가장 높은 표면 자유에너지 ($44.20 mJ/m^2$에서 $50.03 mJ/m^2$)를 나타내었다.

식물유래 섬유자원의 재활용: 탈묵 수율 개선을 위한 신문 지료의 수화 촉진 방안 (Recycling of Plant Fiber Resources: Enhanced Hydration of Newspaper Stock for Decrease of Deinking Reject)

  • 정성현;김중호;주종훈;방재욱
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2011년도 추계학술발표회 논문집
    • /
    • pp.39-41
    • /
    • 2011
  • The recycling rate of recovered paper in Korea is the highest in the world, 92%, but remanufacturing yield is low due to the extremely poor quality of the paper. The poor quality, in turn, influences to the reject amount in deinking process. To increase the yield of old newspaper recycling process, hydrophobic degree of inorganic pigments of deinking stock must be reduced. To determine the hydrophobicity, Pitch Potential Deposit Tester (PDT) was newly designed and applied with respect to the SB latex property of various quality used in Korea; its hydrophobic degree according to Tg, gel content, charge and particle size of latex and optimum designing condition of SB latex. And below are the conclusions: 1. The reason of excessive reject from old newspaper deinking process for total amount of printed ink is loss of inorganic pigments. When lipase, a biochemical catalyst, was applied with the purpose of preventing inorganic pigments loss about more than 70% of total reject weight and promoting hydration of pulp for deinking, deinking process yield of pre flotation secondary stage increased remarkably without any changes of deinking efficiency. 2. Lipase improved deinking stock by cutting ester linkage on surface of hydrophobic materials to promote its hydration. From this, it reached the conclusion that hydration degree of stock exercises significant effect on flotation deinking process yield. 3. Inorganic alkali promotes hydration of deinking stock. But there have been needs for more fundamental measures other than inorganic alkali of promoting hydration for yield improvement. For this, this study intended to find out reasons of chemical properties change on surface of hydrophobic material by change of pH. 4. Pitch Deposit Test (PDT) was performed for understanding principle of why surface of coating flake from OMG is hydrophobic and why it becomes hydrophilic when pH of stock is alkaline. As a result of this test, it is determined that swelling property by change of pH of latex film, which were used as coating adhesive is the reason for hydrophobic change. 5. Hydrophilicity of coating flake increased with hydrophilic pigments. And as more of SB Latex adhesive was used and higher of calcium hardness of stock became, its hydrophilicity decreased. SB Latex adhesive film is reformed by mechanical friction. For having hydrophilicity under neutral pH, strong bruising action such as kneading is required. 6. Because swelling of adhesive film decreases as Tg of SB latex gets lower and mean diameter gets smaller, it shows hydrophobicity under neutral pH. This lowers hydrophilicity of coating flake, which leads to easy elimination with flotation reject on DIP process. Therefore, for improving future flotation yield, it is necessary to develop to use eco-friendly clean SB latex by raising Tg and increasing mean diameter for recycling, and as a result, to reduce excessive loss of coating flake as a reject from deinking process.

  • PDF