• Title/Summary/Keyword: hydrophilic polymers

Search Result 122, Processing Time 0.038 seconds

Physical and Optical Properties of Hydrophilic Tinted Lens Materials with the Fluoro-substituted Aniline Group

  • Park, Se-Young;Lee, Min-Jae;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • The physical and optical properties of polymers with 2-fluoroaniline and 4-fluoroaniline added, which can be used for hydrophilic ophthalmic lenses, were investigated in this study. The UV-blocking properties of 2- and 4-fluoroaniline were also investigated by measuring their UV transmissibility. 2- and 4-Fluoroaniline were used as additives for the basic combination of HEMA, 5% AA, and 1% MMA, and the materials were copolymerized with EGDMA as the cross-linking agent and AIBN as the initiator. The refractive index, water content, optical transmittance, tensile strength, and contact angle were measured to evaluate the physical properties of the produced hydrogel lens. The measured physical properties of the hydrogel contact lens produced with the copolymerized polymer showed a refractive index of 1.425-1.436; a water content of 36.95-44.65%; a visual light transmittance of 66.0-81.0%; a tensile strength of 0.138-0.281 kgf; and a contact angle of $55.02-57.87^{\circ}$. The UV transmissibility was significantly reduced, which indicates that 2-fluoroaniline and 4-fluoroaniline have UV-blocking properties. This study showed that 2- and 4-fluoroaniline are expected to be used as UV-blocking materials in hydrogel ophthalmic lenses whose physical properties, such as their refractive index and water content, do not change.

Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su;Park, In-Kyu;Nah, Jae-Woon;Toshihiro Akaike
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.2-8
    • /
    • 2003
  • The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

Synthesis and Characterization of Biodegradable Elastic Hydrogels Based on Poly(ethylene glycol) and Poly(${\varepsilon}-caprolactone$) Blocks

  • Im, Su-Jin;Choi, You-Mee;Subramanyam, Elango;Huh, Kang-Moo;Park, Ki-Nam
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Novel biodegradable elastic hydrogels, based on hydrophilic and hydrophobic polymer blocks, were synthesized via the radical crosslinking reaction of diacrylates of poly(ethylene glycol) (PEG) and poly(${\varepsilon}-caprolactone$) (PCL). PEG and PCL diols were diacrylated with acryloyl chloride in the presence of triethylamine, with the reaction confirmed by FT-IR and $^1H-NMR$ measurements. The diacrylate polymers were used as building-blocks for the syntheses of a series of hydro gels, with different block compositions, by simply varying the feed ratios and molecular weights of the block components. The swelling ratio of the hydrogels was controlled by the balance between the hydrophilic and hydrophobic polymer blocks. Usually, the swelling ratio increases with increasing PEG content and decreasing block length within the network structure. The hydrogels exhibited negative thermo-sensitive swelling behavior due to the coexistence of hydrophilic and hydrophobic polymer components in their network structure, and such thermo-responsive swelling/deswelling behavior could be repeated using a temperature cycle, without any significant change in the swelling ratio. In vitro degradation tests showed that degradation occurred over a 3 to 8 month period. Due to their biodegradability, biocompatibility, elasticity and functionality, these hydrogels could be utilized in various biomedical applications, such as tissue engineering and drug delivery systems.

Immobilization and Grafting of Acrylic Acid on Polyethylene Surface by Ar-plasma Treatment (알곤 플라즈마처리에 의한 폴리에틸랜 표면상의 아크릴산 고정화와 그라프팅)

  • 김민정;서은덕
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.279-286
    • /
    • 2002
  • For surface modification of polymers with hydrophilic functional groups, acrylic acid was grafted and immobilized on the surface of polyethylene(PE) by cold-plasma treatment using Ar gas. The modifications were identified by analysis of ATR-IR spectrum and by the measurement of contact angles. Compared to virgin PE significant decreases in contact angle were observed for both the grafted PE and the immobilized PE. The decreases of contact angle were in the range of 47~$53^{\circ}$ for grafted PE and 23~$26^{\circ}$ for immobilized PE. The degree of hydrophilicity depended strongly on the plasma-treating time and discharge power. For the case of grafting it has show that the longer plasma-treating time, the higher hydrophilic character. For the case of immobilization, whereas, higher discharge power and longer exposure to plasma have shown the detrimental effect for the preparation of hydrophilic PE surface due to the decrease of carboxyl group by ablation effect. The decrease in adhesion strength of immobilized PE. compared to grafted PE, was also attributed to the ablation of carboxyl group.

Radiation Technology in the Preparation of Polyethylene Oxide Hydrophilic Gels and Immobilization of Proteases for Use in Medical Practice

  • E.I.Vereschagin;Han, Do-Hung;A.W.Troitsky;O.V.Grishin;S.E.Petrov;E.P.Gulyaeva;L.A.Bogdanova;M.V.Korobeinikov;V.L.Auslender
    • Archives of Pharmacal Research
    • /
    • v.24 no.3
    • /
    • pp.229-233
    • /
    • 2001
  • This Paper deals with the development of a technology for making a hydrophilic gel of Polyethylene oxide reception in which radiating ability is employed to cause cross-linking of Polymers in a water solution. The gel of polyethylene oxide was shown to be nontoxic contain 5-50% of polymer and be useful in composite medicinal forms along with biologically active substances including Bac. subtilis proteases. Proteases immobilized in the gel possess high thermal stability and proteolytic activity and are readily applied in medicine. The effect of immobilized proteolytic and glucolytic enzymes of Bac. subtillis (Immozimase) on the warm ischemia-reperfusion (I/R) which can cause hepatic and jejunum injury was also studied. These enzymes were immobilized on water-soluble polymer polyethylene glycol by means of an electron beam. The number of degraanulated mast cells as well as serum ALT after I/R in the group with Immozimase was decreased to almost half as compared with the control group. Pretreatment with Immozimase resulted in significant reduction of hepatic and gut neutrophil accumulation as compared with control animals. It was concluded that Immozimase has a protective effect for hepatic and gut ischemia/reperfusion, and this effect seems to be associated with prevention of leukocyte accumulation .

  • PDF

Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface (코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선)

  • Kim, Dae Hwan;Kum, Chang Hun
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.

In vitro Release Characteristics of Nitroglycerin from Microemulsion-Based Hydrogel System for Anal Fissure Treatment

  • Lee, Sang-Kil;Shin, Hyun-Woo;Kang, Myung-Joo;Cho, Seong-Wan;Cho, Jae-Youl;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.2
    • /
    • pp.95-99
    • /
    • 2007
  • To develop topical nitroglycerin (NTG) preparation far chronic anal fissure treatment, the release rate of NTG should be controlled carefully. For this, microemulsion was prepared from the phase diagram construction with Cremophor ELP, ethanol and Labrafil $M1944CS^{(R)}$ and the topical gel was prepared by dispersing NTG containing microemulsion into hydrophilic polymers. in viかo release characteristics were evaluated with Franz diffusion cell using cellulose membrane and compared with control hydrogels. The release rate of NTG was followed $1^{st}$ order kinetics and, when comparing the NTG release from control hydrogel with that from the microemulsion-based hydrogel, the NTG release rate was controlled by the content of polymers within continuous phase and the concentration of dispersed phase.

Synthesis and Properties of Sulfonated Poly (Arylene Ether Sulfone) Block Copolymers with Naphthalene Moiety for Polymer Electrolyte Fuel Cells (고분자 전해질형 연료전지용 나프탈렌 부분을 갖는 술폰화된 폴리(아릴렌 이써 설폰) 블록 공중합체의 합성과 특성연구)

  • HAN, DASOM;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.331-338
    • /
    • 2018
  • In this study, sulfonated PAES block copolymers have been synthesized via nucleophilic substitution reaction. Hydrophobic oligomer was prepared using 2,6-dihydroxynaphthalene and bis(4-chlorophenyl) sulfone, whereas hydrophilic oligomer was prepared using sulfonated bis(4-chlorophenyl) sulfone and bis(4-hydroxyphenyl) sulfone. The chemical structure of polymers was analyzed by $^1H$ NMR, FT-IR and GPC. The thermal properties of polymers were measured by TGA and DSC. The oxidative stability of membranes was investigated by Fenton's test. Furthermore, the proton conductivity of membrane was found to be 26 mS/cm at $90^{\circ}C$. All physiochemical properties suggest that fabricated membrane have a great potential for applications in PEMFC.

Morphological, Physical Characterization of Poly(acrylic acid) Nanogel Prepared by Electron Beam Irradiation

  • Park, Jong-Seok;Choi, Jong-Bae;Gwon, Hui-Jeong;Lim, Youn-Mook;Jeong, Sung-In;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • Nanogels are internally cross-linked particles of sub-micrometer size made of hydrophilic polymers and are considered a distinct type of macromolecules, compared with linear and branched polymers or macroscopic gels. In this study, we studied a method of radiation induced synthesis of nanogels, which allows us to obtain tailored intra-molecularly crosslinked macromolecules of independently chosen molecular weight and dimensions. Thus, we report the possibility of applying the prepared nanogels using poly(acrylic acid) through electron beam irradiation for potential application as biomaterials. The nanogels were characterized by scanning electron microscopy (SEM). In addition, the size and zeta-potential of nanogels were measured by a particle size analyzer (PSA). The nanogels were prepared at an approximate size of 180 nm at 100 kGy and were spherical in shapes. The size of the nanogels decreased with increasing irradiation doses, and the absolute value of zeta potential increased with increasing irradiation doses.

Enhancement of Soil Physicochemical Properties by Blending Sand with Super Absorbent Polymers of Different Swelling Capacities (팽윤 능력이 다른 고흡수성수지(Super Absorbent Polymers)의 혼합 비율별 모래 토양의 물리화학성 변화)

  • Young-Sun Kim;Tae-Wooung Kim;Yun-Seob Kim;Yang-Ho Na;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Super absorbent polymers (SAPs) are hydrophilic molecules that can absorb large amounts of water. This study was conducted to investigate the enhancement of the physicochemical properties of sand soil blended with three SAPs imbibed with 100, 150, and 200-fold water. Three treatments were applied, namely, 100SAP, 150SAP, and 200SAP. The three SAPs were blended at concentrations of 0% (control), 3%, 5%, 7%, and 10% with sand. The pH, electrical conductivity, and cation exchangeable capacity (CEC) of soil blended with the three SAPs were pH 6.35-6.46, 0.09-0.65 dS/m, and 1.42-1.92 cmolc/kg, respectively, and their capillary porosity, total porosity, and saturated hydraulic conductivity were 21.0-29.3%, 39.2-48.7%, and 272-470 mm/hr. CEC, capillary porosity, total porosity, and saturated hydraulic conductivity of soil were positively correlated with the ratio of the SAPs (p<0.01). These results indicate that blending sand soil with SAPs increased CEC, capillary porosity, and saturated hydraulic conductivity, thus improving the nutrient-retention capacity, water-retention capacity, and permeability of the soil.