• Title/Summary/Keyword: hydrometallurgical process

Search Result 35, Processing Time 0.022 seconds

Recovery and Synthesis of Silver Nanoparticles from Leaching Solution of LTCC Electrode By-Products (LTCC 전극공정부산물 침출 용액으로부터 은 회수 및 은 나노입자 제조)

  • Yoo, Juyeon;Kang, Yubin;Park, Jinju;Ryu, Hojin;Yoon, Jin-Ho;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.315-320
    • /
    • 2017
  • There has been much interest in recycling electronic wastes in order to mitigate environmental problems and to recover the large amount of constituent metals. Silver recovery from electronic waste is extensively studied because of environmental and economic benefits and the use of silver in fabricating nanodevices. Hydrometallurgical processing is often used for silver recovery because it has the advantages of low cost and ease of control. Research on synthesis recovered silver into nanoparticles is needed for application to transistors and solar cells. In this study, silver is selectively recovered from the by-product of electrodes. Silver precursors are prepared using the dissolution characteristics of the leaching solution. In the liquid reduction process, silver nanoparticles are synthesized under various surfactant conditions and then analyzed. The purity of the recovered silver is 99.24%, and the average particle size of the silver nanoparticles is 68 nm.

Recovery of nickel from the spent nickel-cadmium battery (폐 Ni-Cd 전지로부터 니켈의 회수)

  • 박제신;박경호;전호석;손정수;김병규
    • Resources Recycling
    • /
    • v.8 no.5
    • /
    • pp.28-33
    • /
    • 1999
  • Trus paper presenls a hydrometallurgical process Tor recovcnng ~uckcals mckcl sulfate fiom the spent nickel-cadrnlum bauery in whch c:,dmi~lm war re~novcdb y vapowing m e h d in vacuum. F ~ s ts,e lcct~vcc rushing and classification mell~odw ere performed to separate iron physically and the nickel-rich sample (over 80% nickel) was obtained. Ths sarnple was dissolved in sulf~ uiuica cid to obtain a luckcl sulfatc soluho~d~o se to its seluradon painl. TIE Cree acid in the unpurificd nickcl solut~onw as neutl-dized and iron war ve~novedk om the solulmn Thc mckel sulhte solution was c~yst~llizeadt around 45'C to obtain ruckel sulfate henahyril-ate.

  • PDF

Aqueous Chemistry of Boric Acid (보론산의 용액 화학)

  • Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.23-28
    • /
    • 2018
  • Distribution data of boric acid in water is necessary to develop a hydrometallurgical process for the recovery of boron from primary and secondary resources containing boron. Boric acid exists as $B(OH)_3$ and $B(OH)_4{^-}$ when solution pH is less than 6 and higher than 12, respectively. In the solution pH range of 6-11, condensation reaction between $B(OH)_3$ and $B(OH)_4{^-}$ results in the formation of some polymers. The mole fraction of the boron polymers such as $B_3O_3(OH)_4{^-}$ and $B_4O_5(OH){_4}^{2-}$ is proportional to the concentration of boric acid.

Rare earths from secondary sources: profitability study

  • Innocenzi, Valentina;De Michelis, Ida;Ferella, Francesco;Veglio, Francesco
    • Advances in environmental research
    • /
    • v.5 no.2
    • /
    • pp.125-140
    • /
    • 2016
  • The paper is focused on the economic analysis of two hydrometallurgical processes for recovery of yttrium and other rare earth elements (REEs) from fluorescent phosphors of spent lamps. The first process includes leaching with sulphuric acid and precipitation of a mixture of oxalates by oxalic acid, the second one includes leaching with sulphuric acid, solvent extraction with D2EHPA, stripping by acid and recovery of yttrium and traces of other rare earths (REs) by precipitation with oxalic acid. In both cases the REEs were recovered as oxides by calcination of the oxalate salts. The economic analysis was estimated considering the real capacity of the HydroWEEE mobile's plant ($420kg\;batch^{-1}$). For the first flow-sheet the cost of recycling comes to $4.0{\euro}kg^{-1}$, while the revenue from the end-product is around $5.40{\euro}kg^{-1}$. The second process is not profitable, as well as the first one, taking into account the composition of the final oxides: the cost of recycling comes to $5.2{\euro}kg^{-1}$, while the revenue from the end-product is around $3.56{\euro}kg^{-1}$. The process becomes profitable if the final RE oxide mixture is sold for nearly $50{\euro}kg^{-1}$, a value rather far from the current market prices but not so unlikely since could be achieved in the incoming years, considering the significant fluctuations of the Res' market.

Effect of Carbon on Electrode Characteristics of $LiCoO_2$ Resynthesis ($LiCoO_2$의 재합성시(再合成時) 전극특성(電極特性)에 미치는 탄소(炭素)의 영향(影響))

  • Lee, Churl-Kyoung;Park, Jeong-Kil;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.10-19
    • /
    • 2007
  • The mechanical process followed by hydrometallurgical treatment has been developed in order to recover cobalt and lithium from spent lithium ion battery. In the previous study, a citrate precursor combustion process to prepare cathodic active materials from the leaching solution was elucidated. Resynthesis of electrode materials should be more valuable in spent battery recycling. Conventional slurry mixing of $LiCoO_2$ and carbon cannot make uniform distribution, and therefore the cathode cannot reach the theoretical charge-discharge capacity and is easily degraded during the charge-discharge cycling. In this study, ultra-fine $LiCoO_2$ powders has been prepared by modification of the combustion process and fabricated the enhanced cathode by modification of mixing method of $LiCoO_2$ and carbon added.

Current Status of Zinc Smelting and Recycling (아연의 제련 및 리사이클링 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.30-41
    • /
    • 2019
  • Global production of zinc is about 13 million tons and zinc is the fourth-most widely used primary metal in the world following iron, aluminum and copper. When zinc is recycled to produce secondary zinc, it can save about 75 % of the total energy that is needed to produce the primary zinc from ore, and in therms of $CO_2$ emissions reduced by about 40 %. However, since zinc is mainly used for galvanizing of steel, the recycling rate of zinc is about 25 %, which is lower than other metals. The raw materials for recycling of zinc include dusts generated in the production of steel and brass, sludge in the production process of non-ferrous metals, dross in the melting of zinc ingots or hot dip galvanizing, waste batteries, and metallic scrap. Among them, steelmaking dust and waste batteries are most actively recycled up to now. Most of the recycling process uses pyrometallurgical methods. Recently, however, much attention has been given to a combined process of pyrometallurgical and hydrometallurgical processes.

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Preparation of High Purity ZnO Powder from zinc-bearing waste by the Hydrometallurgical Process (함아연 폐기물로부터 습식법에 의한 고순도 ZnO 분말의 제조)

  • 이재천;이강인;유효신
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.58-68
    • /
    • 1992
  • A process development for direct synthesis of high pure ZnO powders from zinc-bearing waste was investigated. This waste contains a 55% of zinc and it was extracted by the sulfuric acid(leaching). After removal of iron ion by precipitation from the zinc solution, the purification through a solvent extraction by the use of D2EHPA as an extractant was carried out. Then, loaded zinc in organic solution was stripped and precipitated simultaneously using a precipitant such as oxalic acid. Then, loaded zinc in organic solution was stripped and precipitated simulataneously using a precipitant such as oxalic acid. The synthesized $ZnC_2O_4$ powders by the precipitation stripping method was calcined to obtain more than 99.9% of ZnO powders. The effect of sulfuric acid concentration, leaching time, pulp density on the extraction of zinc was studied and the optimum conditions for the solvent extraction were obtained through the investigation of purification of zinc solution. The size, morphology and size distribution of synthesized $ZnC_2O_4$ powders were studied in terms of oxalic acid concentration, temperature, surfactant added, precipitation time, etc.

  • PDF

Nitric acid leaching of electronic scraps and the removal of free nitric acid from the leaching solution for the recovery of copper and tin. (전자(電子)스크랩에서 구리 및 주석의 회수(回收)를 위한 질산(窒酸) 침출(浸出) 및 침출액(浸出液)에서 유리질산(遊離窒酸) 제거(除去) 연구(硏究))

  • Ahn, Jae-Woo;Seo, Jae-Seong
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.44-51
    • /
    • 2009
  • Fundamental study has been made on the recovery of copper from the electronic scrap by hydrometallurgical process. Nitric acid was used as a leaching agent to dissolve the metals such as Cu, Sn, Pb, Fe etc. from the crushed electronic scraps. TBP was employed to extract nitric acid from the strong nitric acid leaching solutions and to reclaim nitric acid. From the experimental results, Cu was effectively leached by 3.0-4.0 M nitric acid. And 95% of nitric acid in the leaching solution was extracted by 60% TBP, and 98% of nitric acid was stripped from the loaded organic phase by distilled water and it was possible to reuse as a leaching agent.

Investigation of Water-Washing Process Parameters for Removal of Alkali Metals and Chlorides from Electric Arc Furnace Dust (EAFD) (전기 제강로 분진(EAFD)으로부터 알칼리 금속 및 염화물 제거를 위한 수 세척 공정 운영인자 조사)

  • Lee, Han Saem;Park, Da so mi;Ha, Jong Gil;Shin, Hyun Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.626-633
    • /
    • 2017
  • The present study investigated the effect of a water-washing process, which is part of the acid hydrometallurgical process for recovery of high purity of zinc, on the removal of alkali metals and chlorides (Na, K, Ca, Cl) from Electric arc furnace dust (EAFD). Two EAFD samples with different properties were characterized by particle size, XRD and element analysis, and their washing efficiencies (%) on alkali metals and chlorides were compared according to pH, washing time, liquid to solid (L/S) ratio and number of washings. The results show that the alkali metals and chlorides could be effectively removed by the washing (at L/S ration of 3 for more than 30 min., pH 10~11) while minimizing loss of zinc (<0.1%), in which the washing efficiency was Na-78%, K-76%, Cl >99%, respectively. Na and K could be removed up to 97% and 89% respectively by 3 times of repeated washings. With increased sample volume (10 times) of the mixed (1:1, w/w) sample with two types of EAFD, it was confirmed that the pH(10~11) can be used as the main process control parameter for the washing of the alkali metals regardless of EAFD properties.