Browse > Article

Effect of Carbon on Electrode Characteristics of $LiCoO_2$ Resynthesis  

Lee, Churl-Kyoung (School of Material & System Engineering, Kumoh National Institute of Technology)
Park, Jeong-Kil (School of Material & System Engineering, Kumoh National Institute of Technology)
Sohn, Jeong-Soo (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources)
Publication Information
Resources Recycling / v.16, no.6, 2007 , pp. 10-19 More about this Journal
Abstract
The mechanical process followed by hydrometallurgical treatment has been developed in order to recover cobalt and lithium from spent lithium ion battery. In the previous study, a citrate precursor combustion process to prepare cathodic active materials from the leaching solution was elucidated. Resynthesis of electrode materials should be more valuable in spent battery recycling. Conventional slurry mixing of $LiCoO_2$ and carbon cannot make uniform distribution, and therefore the cathode cannot reach the theoretical charge-discharge capacity and is easily degraded during the charge-discharge cycling. In this study, ultra-fine $LiCoO_2$ powders has been prepared by modification of the combustion process and fabricated the enhanced cathode by modification of mixing method of $LiCoO_2$ and carbon added.
Keywords
Recycling of Spent Battery; Synthesis of $LiCoO_2$; Citrate Precursor; Combustion; Carbon Mixing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 이철경, 양동효, 김낙형, 2002: Oxalic acid 용액에서 $LiCoO_2$의 선택침출, 지원리사이클링학회지, 11(3), pp. 10-16
2 Cho, J., et al, 1999: Effect of Preparation Methods of $LiNi_{1-x}Co_xO_2$ Cathode Materials on Their Chemical Structure and Electrode Performance, J. Electrochem. Soc., 146, pp. 3571-3576   DOI
3 Cho, J., Kim, Y. J., and Park, B., 2001: $LiCoO_2$ Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase, J. Electrochem. Soc, 148, pp. A1110-A1115   DOI   ScienceOn
4 Amatucci, G. G, Tarascon, J. M., and Klein, L. C., 1996: Cobalt dissolution in$LiCoO_2-based$ non-aqueous rechargeable batteries, Solid State Ionics, 3(1-2), pp. 167-173   DOI   ScienceOn
5 Aurbach, D., et al, 2002: On the capacity fading of $LiCoO_2$ intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives, Electrochem. Acta, 47(27), pp. 4291-4306   DOI   ScienceOn
6 Holzapfel, M., Schreiner, R., and Ott, A., 2001: Lithium-ion conductors of the system $LiCo_{1-x}Fe_xO_2$ : a first electrochemical investigation, Electrochim. Acta, 46(7), pp. 1063-1070   DOI   ScienceOn
7 Delmas, C. and Saadoune, I., 1992: Electrochemical and physical properties of the $LiNi_{1-y}Co_yO_2$ phases, Solid State Ionics, 53/56, pp. 370-375   DOI   ScienceOn
8 Delmas, C., et al., 1999: An overview of the Li(Ni, M)$O_2$ systems: syntheses, structures and properties, Electrochim. Acta, 45(1-2), pp. 243-253   DOI   ScienceOn
9 Yoon, W., et al, 2000: Structural and Electrochemical Properties of $LiAl_yCo_{1-y}O_2$ Cathode for Li Rechargeable Batteries, J. Electrochem. Soc., 147, pp. 2023-2028   DOI   ScienceOn
10 Kobayashi, H., et al, 2000: Electrochemical Properties of Hydrothermally Obtained $LiCo_{1-x}Fe_xO_2$ as a Positive Electrode Material for Rechargeable Lithium Batteries, J. Electrochem. Soc., 147, pp. 960-969   DOI   ScienceOn
11 Kim, J., et al, 2005: Direct carbon-black coating on $LiCoO_2$ cathode using surfactant for high-density Li-ion cell, J. Power Sources, 139, pp. 289-294   DOI   ScienceOn
12 박정길, 2007: 리튬이온전지 양극에 탄소물질 첨가의 영향, 석사학위논문, 금오공과대학교 대학원
13 Cheon, S. E., et al, 2000: Effect of binary conductive agents in $LiCoO_2$ cathode on performances of lithium ion polymer battery, Electrochim. Acta, 46, pp. 599-605   DOI   ScienceOn
14 Chebiam, R. V., Prado, R, and Manthriam, A., 2002: Comparison of the Chemical Stability of $Li_{1-x}CoO_2$ and $Li_{1-x}Ni_{0.85}Co_{0.15}O_2$ Cathodes, J. Solid State Chem., 163(1), pp. 5-9   DOI   ScienceOn
15 Mladenov, M., et al, 2001: Effect of Mg doping and MgO-surface modification on the cycling stability of $LiCoO_2$ electrodes, Eletrochem. Comm., 3(8), pp. 410-416   DOI   ScienceOn
16 Ohzuku, T. and Ueda, A., 1997: Phenomenological Expression of Solid-State Redox Potentials of $LiCoO_2$, $LiCoO_{1/2}Ni_{1/2}O_2$, and $LiNiO_2$ Insertion Electrodes, J. Electrochem. Soc., 144, pp. 2780-2785   DOI
17 Cho, J., et al, 2000: Electrochemical Properties and Thermal Stability of $LiNi_{1-x}Co_xO_2$ Cathode Materials, J. Electrochem. Soc., 147, pp. 15-20   DOI   ScienceOn
18 Alcantara, R., et al, 1999: X-ray diffraction, $^{57}Fe$ Mossbauer and step potential electrochemical spectroscopy study of $LiFe_yCo_{1-y}O_2$ compounds, J. Power Sources, 81/82, pp. 547-553   DOI   ScienceOn
19 이철경, 김태현,2000: 폐리튬이온전지로부터 분리한 양극 활물질의 침출, 자원리사이클링 학회지,9(4), pp. 37-43
20 Tukamoto, H., and West, A. R., 1997: Electronic Conductivity of $LiCoO_2$ and Its Enhancement by Magnesium Doping, J. Electrochem. Soc, 144, pp. 3164-3168   DOI
21 Madhavi, S. and Subba Rao, G. V., 2001: Synthesis and Cathodic Properties of $LiCo_{1-y}RhyO_2$ ($0\leq{y}\leq0.2$) and $LiRhO_2$, J. Electrochem. Soc., 148, pp. A1279-1286   DOI   ScienceOn
22 Chebiam, R. V., Kannan, A. M., Prado, F., and Manthriam, A., 2001: Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries, Electrochem. Commun., 3(11), pp. 624-627   DOI   ScienceOn
23 Chen, Z., Christensen L., and Dahn, J. R., 2003: Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers, Electrochem. Comm., 5(11), pp. 919-923   DOI   ScienceOn
24 Lee, C. K., et al., 1997: Thermal Treatent of $La_{0.6}Ca_{0.4}CoO_3$ Perovskite Oxides for Bifunctional Air Electrodes Journal of Electrochem. Soc., 144(11), pp. 3801-3807   DOI
25 Ohzuku, T., et al, 1993: Comparative study of $LiCoO_2$, $LiNi_{1/2}Co_{1/2}O_2$ and $LiNiO_2$ for 4 volt secondary lithium cells, Electrochim. Acta, 38(9), pp. 1159-1167   DOI   ScienceOn
26 Thomas, M. G. S. R., Bruce, P. G., and Goodenough, J. B., 1986: AC impedance of the $Li_{1-x}CoO_2$ electrode, Solid State Ionics, 18-19, pp. 794-798
27 Jang, Y, 1999: $LiAl_yCo_{1-y}O_2$ Intercalation Cathode for Rechargeable Lithium Batteries, J. Electrochem. Soc, 146, pp. 862-868   DOI   ScienceOn
28 Imanish, N., et al, 2001: Cycling performances and interfacial properties of a $Li/PEO-Li(CF_3SO_2)_2N-$ ceramic filler/$LiNi_{0.8}Co_{0.2}O_2$ cell, J. Power Sources, 97/98, pp. 795-797   DOI   ScienceOn
29 Rougier A., et al, 1996: Effect of cobalt substitution on cationic distribution in $LiNi_{1-y}Co_yO_2$ electrode materials, Solid State Ionics, 90(1-4), pp. 83-90   DOI   ScienceOn
30 이철경, 양동효, 2001: 폐리튬이온전지로부터 유가금속의 회수, 공업화학회지, 12(8), pp. 890-895
31 Dominko, R., et al., 2003: Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries, Electrochim. Acta, 48(24), pp. 3709-3716   DOI   ScienceOn
32 Hong, J. K., et al, 2002: Effect of carbon additive on electrochemical performance of $LiCoO_2$ composite cathodes, J. Power Sources, 111, pp. 90-96   DOI   ScienceOn
33 Scorati, B., 1992: Lithium Rocking Chair Batteries: An Old Concept, J. Electrochem. Soc., 139, pp. 2776-2781   DOI
34 Lee, C. K. and Rhee, K.-I., 2002: Preparation of $LiCoO_2$ from spent Lithium Ion Batteries, Journal of Power Sources, 109, pp. 17-21   DOI   ScienceOn
35 Reimers, J. N. and Dahn, J. R., 1992: Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in $LixCoO_2$, J. Electrochem. Soc., 139, pp. 2091-2097   DOI
36 Reimers, J. N., Dahn, J. R., and von Sacken, U., 1993: Effects of Impurities on the Electrochemical Properties of $LiCoO_2$, J. Electrochem. Soc, 140, pp. 2752-2754   DOI
37 Julien, C, Nazari, A. A., and Rougier, A., 2000: Electrochemical performances of layered $LiM_{1-y}M_yO_2$ (M=Ni, Co; M'=Mg, Al, B) oxides in lithium batteries, Solid State Ionics, 135(1-4), pp. 121-130   DOI
38 Madhavi, S., et al, 2001: Effect of aluminium doping on cathodic behaviour of $LiNi_{0.7}Co_{0.3}O_2$, J. Power Sources, 93(1-2), pp. 156-162   DOI   ScienceOn
39 Swain, B., et al, 2007: Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, Journal of Power Sources, 167, pp. 536-544   DOI   ScienceOn
40 Lee, C. K. and Rhee, K.-I., 2003: Reductive leaching of cathodic active materials from lithium ion battery waste, Hydrometallurgy, 68, pp. 5-10   DOI   ScienceOn