• 제목/요약/키워드: hydrolysis mechanism

검색결과 240건 처리시간 0.021초

살충성 $O,O-Diethyl-{\alpha}-cyanobenzylideneamino-oxyphosphorothioate\;(Volaton^{\circledR})$의 가수분해 반응메카니즘 (Kinetics and Mechanism of Hydrolysis of Insecticidal $O,O-diethyl-{\alpha}-cyanobenzylideneamino-oxyphosphorothiate\;(Volaton^{\circledR})$)

  • 성낙도;김현이;박천규
    • Applied Biological Chemistry
    • /
    • 제37권2호
    • /
    • pp.124-129
    • /
    • 1994
  • 25%(v/v) dioxane 수용액의 넓은 pH범위에서 살충성 $O,O-Diethyl-{\alpha}-cyanobenzylideneamino-oxyphosphorothioate(Volaton^{\circledR})$의 가수분해 반응은 용매효과 (pH 6.0; m=0.21, n=1.55, pH 12.0; m=0.42, n=3.14 및 $|m|{\ll}|l|$), 반응 속도식, 일반염기 촉매효과, 가수분해 반응생성물 분석 및 분자 궤도(MO) 함수 계산 등의 결과로부터 trigonal bipyramidal$(sp^3d^2)$중간체를 경유하여 pH 7.0 이하에서는 $A_{AC}2$형 반응, 그리고 pH 9.0 이상에서는 $B_{AC}2$형 반응이 일어난다. Volaton의 가수분해 반응성은 입체 장애보다는 양하전 크기$(p{\gg}{\alpha}C_2)$에 의존적이며 $pH\;7.0{\sim}9.0$ 사이에서는 이들 두 반응이 경쟁적으로 일어나는 반응 메카니즘을 제안하였다.

  • PDF

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

인돌 유도체 II. Indolylacrylophenone 유도체의 가수분해 반응에 대한 메카니즘과 그 반응 속도론적 연구 (Indole Derivatives II. The Kinetics and Mechanism of the Hydrolysis of Indolylacrylophenone Derivatives)

  • 이기창;류정욱
    • 한국응용과학기술학회지
    • /
    • 제9권2호
    • /
    • pp.119-126
    • /
    • 1992
  • The kinetics of the hydrolysis of indolylacrylophenone derivatives(IA) was investigated by ultraviolet spectrophotometry in 30% dioxane-$H_2O$ at 25$^{\circ}C$ Rate equations were obtained over a wide pH range. On the basis of rate equation, general base catalysis and Hammett's plot, the mechanism of hydrolysis to the (IA) were proposed: Below pH 3.0, the hydrolysis of (IA) was proportional to hydronium ion concentration, between pH 4.0${\sim}$9.0 neutral water molecule and hydroxide ion were added to carbon-carbon double bond and over pH 10.0 hydrolysis of (IA) was proportional to hydroxide ion concentration.

N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl Chloride 유도체의 가수분해 반응 메카니즘 (Hydrolysis Mechanism of N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl Chloride Derivatives)

  • 권기성;송윤이
    • 대한화학회지
    • /
    • 제39권8호
    • /
    • pp.650-656
    • /
    • 1995
  • 25$^{\circ}C$의 50%(v/v) 메탄올-물의 혼합용매 속에서 N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl Chloride 유토체의 가수분해 반응 속도 상수를 자외선 분광광도법으로 측정하여 반응속도식, 치환기효과, 용매효과, 염효과, 열역학적 할성화 파라미터 및 가수분해 생성물의 분석 등의 결과로부터 pH9.0 이하의 범위에서는 azocarbonium ion 중간체를 지나는 $S_N1$형 반응, pH 10.0 이상의 pH에서는 사면체 중간체를 지나는 친핵성 첨가-제거반응($Ad_{N-E}$)이 일어남을 제안하였다.

  • PDF

N-(benzoyl)-C-(N-methylanilino)imidoylchloride 유도체의 가수분해 반응메카니즘 (Hydrolysis Mechanism of N-(benzoyl)-C-(N-methylanilino)imidoylchloride Derivatives)

  • 권기성;이용구;성낙도;김천석
    • 대한화학회지
    • /
    • 제37권6호
    • /
    • pp.618-625
    • /
    • 1993
  • 25$^{\circ}C$의 50%(v/v) 메탄올-물의 혼합용액 속에서 pH 변화에 따른 X-치환된 N-(benzoyl)-C-(N-methylanilino)imidoylchloride(s)들의 가수분해 반응속도상수를 측정하여 반응속도식, 치환기효과, 용매효과, 염효과, 열역학적 활성화 파라미터 및 가수분해반응 생성물 분석 등의 결과로부터 pH 3.0~10.0까지의 사이에서는 azocarbonium ion 중간체를 지나는 $S_N$1형 반응, pH 3.0 이하의 pH 10.0 이상의 pH에서는 사면체 중간체를 지나는 친핵성 첨가-제거반응(A$d_{N-E}$)이 일어남을 제안하였다.

  • PDF

N-(2,4-dinitrophenyl)benzhydrazonyl Bromide 유도체의 가수분해 반응메카니즘 (Hydrolysis Mechanism of N-(2,4-dinitrophenyl)benzhydrazonyl Bromide Derivatives)

  • 박찬일;차기원;이익춘;장병두
    • 대한화학회지
    • /
    • 제41권4호
    • /
    • pp.198-204
    • /
    • 1997
  • N-(2,4-dinitrophenyl)benzhydrazonyl bromide 유도체들의 가수분해 반응속도상수를 20$^{\circ}C$의 수용액에서 자외선 분광광도법으로 측정하여 넓은 pH 범위에서의 반응속도식을 구하였다. 반응속도식, 용매효과, 치환기 효과, 염효과, 열역학적 활성화 파라미터 등의 결과로부터 가수분해 반응메카니즘을 제안하였다. 즉, pH 3.0에서는 carbonium ion 중간체를 거쳐 SN1 반응에 의해 진행되며, pH 10.0에서는 1,3-dipolar 반응 메카니즘 또는 SN2 반응에 의해 진행됨을 제안하였다.

  • PDF

1-Halo-3-Phenyl-1,2-Propadiene들의 가수분해에 대한 반응속도론적 연구 (Kinetics and Mechanism of the Hydrolysis of 1-Halo-3-Phenyl-1,2-Propadienes)

  • 이강렬;유힐라;정인찬;허태성
    • 대한화학회지
    • /
    • 제41권7호
    • /
    • pp.351-356
    • /
    • 1997
  • haloallene 유도체(1-halo-3-phenyl-1,2-propadiene)에 대해 EHMO계산을 하여, 에너지적으로 안정한 haloallene 분자의 구조를 결정하였다. MO 계산 데이터와 속도론적인 실험 결과로부터 haloallene의 가수분해반응 메카니즘을 제안하였다. pH 8.0 이하에서는 중간체로 carbonium ion Ⅱ이 생성되는 용매도움 $S_N1$ 메카니즘에 의해 진행된다. 그러나 pH 9.5 이상에서는 전위상태 Ⅲ를 거치는 $S_N2'$ 메카니즘에 의해 진행된다.

  • PDF

(${\alpha}$-Phenyl-N-iso-Propylnitrone 유도체의 가수분해 반응 메카니즘과 반응 속도론적 연구 (A Study on the Kinetics and Mechanism of the Hydrolysis of ${\alpha}$-Phenyl-N-iso-propylnitrone)

  • 곽천근;장병만;이석우;이기창
    • 한국응용과학기술학회지
    • /
    • 제11권1호
    • /
    • pp.27-31
    • /
    • 1994
  • The rate constants of hydrolysis of ${\alpha}$-phenly-N-iso-propylnitrone and its derivatives have been determined by UV spectrophotometry at $25^{\circ}C$ and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equations derived and judging from the hydrolysis products obtained and general base and substituent effects, plausible mechanism of hydrolysis in various pH range have been proposed. Below pH 4.5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}$-carbon. Above pH 10.0, the hydrolysis was proceeded by the addition of hydroxide ion to ${\alpha}$-carbon. In the range of $4.5{\sim}10.0$, the addition of water to nitrone was rate controlling step.

가수분해 산물 분포를 이용한 급속혼화강도가 화학적 인 제거 효율에 미치는 영향의 규명 (Evaluation of effect of rapid mixing intensity on chemical phosphorus removal using Al hydrolysis speciation)

  • 김승현;윤동수;문병현
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.367-373
    • /
    • 2011
  • Mechanism of rapid mixing effect on chemical phosphorus removal is evaluated in this study. Assuming that chemical phosphorus removal is unaffected by mixing time, only rapid mixing intensity is evaluated. In order to find out the mechanism, it is hypothesized that rapid mixing affects the Al hydrolysis speciation, and that formation of more monomeric species ($Al^a$) results in better removal of phosphorus. According to a ferron assay, more $Al^a$ formed at higher mixing intensity than at lower intensity. Subsequent experiments revealed that better phosphorus removal was obtained at higher intensity than at lower intensity, in terms of the molar ratio of $Al_{added}/P_{removed}$. The proposed hypothesis was proved in this study. Chemical phosphorus removal is affected by rapid mixing intensity due to its effect on the Al hydrolysis speciation.

C. I. Disperse Blue 79의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of C. I. Disperse Blue 79)

  • 박건용;박창혁;박병기
    • 한국염색가공학회지
    • /
    • 제13권5호
    • /
    • pp.24-24
    • /
    • 2001
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Blue 79(B-79) which is 4-N, N-diacetoxyethyl-2-acylamino-5-ethoxy -2′-bromo-4′,6′-dinitroazobenzene were investigated. The color strength of B-79 in acetone/water solutions of various NaOH concentrations decreased continuously. The hydrolysis rate of B-79 increased with increasing alkali concentration and appeared following first order reaction. The observed rate constants for various concentrations of B-79 showed similar values, and B-79 was hydrolyzed by first order reaction for dye concentration. Therefore, it was confirmed that the overall reaction follow second order kinetics and proceed via S/sub n/2 reaction. From the study on kinetics and spectrometric analysis, it was proposed that the rate determining step of the hydrolysis reaction of B-79 is the nucleophilic substitution reaction - that is the reaction of the rapid attack of $OH^{-}$ on the carbon atom, which is in acceptor ring, adjacent to azo group to break the C-N bond. And it was also found that the final hydrolysis products of B-79 include both the acceptor ring in the form of sodium salt and the donor ring possessing 4-N,N-dihydroxyethyl group converted from 4-N,N-diacetoxyethyl group.