• Title/Summary/Keyword: hydrolysis mechanism

Search Result 241, Processing Time 0.026 seconds

A STUDY ON AMIDI HYDROLYSIS CATALYZED BY MITAL COMPlEXES (금속착물로 아미드 가수분해 촉매화에 관한 연구)

  • 김병순;오영희
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.579-583
    • /
    • 1996
  • This study is involved to develop new catalysts to decompose plastics, detergents and surfactants containing synthetic peptide bonds. As the first year research, the catalytic-hydrolysis of amide bond in copper complex was accomplished. The hydrolysis reaction in aqueous solution was monitored by UV/VIS spectroscopy. As the pH of the solution Is increased and the temperature is raised, the reaction rate increases. The reaction rate is observed as the first order kinetic behavior for the copper complex. The metal catalyzed hydrolysis mechanism is proposed cia metal-hydroxide in the pH region of 5.5 to 6.3. The results of characterization of the catalytic reaction mechanism can be applied to develop new catalysts for peptide bond degradation in further research.

  • PDF

The Kinetics and Mechanism of the Hydrolysis of a 1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene (1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Tae Rin Kim;Tae Seong Huh
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.430-436
    • /
    • 1974
  • The rate constants of hydrolysis of 1,1-dicyano-2-p-dimethylaminophenyl-2-chloroethylene(DPC) were determined at various pH and the rate equation which can be applied over wide pH range is obtained. From the rate equation the mechanism of the hydrolysis of a DPC over wide pH range is fully explained; below pH 3 and above pH 7.5, the rate constant is proportional to the concentration of hydronium ion and hydroxide ion, respectively. However, in the range of pH 3 to 7.5, water, hydronium ion and hydroxide ion catalyze the hydrolysis of DPC.

  • PDF

The Kinetics and Mechanism of the Hydrolysis to Thienyl Chalcone Derivatives (Thienyl Chalcone 유도체의 가수분해 반응메카니즘과 그 반응속도론적 연구)

  • Hwang, Yong-Hyun;Lee, Ki-Chang;Kim, Jin-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.73-80
    • /
    • 1993
  • The hydrolysis reaction kinetics of 2-thienyl chalcone derivatives $[II]{\sim}[V]$ was investigated by ultraviolet spectrophotometery in 20% dioxane-$H_2O$ at $25^{\circ}C$ and the structure of these compounds were ascertained by means of ultraviolet, infrared and NMR spectra. The rate equations which were applied over a wide pH range(pH $1.0{\sim}13.0$) were obtained. The substituent effects on 2-thienyl chalcone derivatives$[II]{\sim}[V]$ were studied, and the hydrolysis were facilitated by electron attracting groups. On the basis of the rate equation, substitutent effect and final product, the plausible hydrolysis reaction mechanism was proposed : At pH $1.0{\sim}9.0$, not relevant to the hydrogen ion concentration, neutral $H_2O$ molecule competitvely attacked on the double bond. By contraries, above pH 9.0, it was proportional to concentration of hydroxide ion.

The Kinetics and Mechanism of the Hydrolysis to Benzoyl Styrene Derivatives (Benzoyl Styrene 유도체의 가수분해 반응 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Yoon, Chul-Hun;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The Hydrolysis kinetics of Benzoyl Styrene Derivatives[I]${\sim}$[IV] was investigated by ultraviolet spectrophotometery in 5% dioxane-$H_2O$ at $40^{\circ}C$. The structure of these compounds were ascertained by means of ultraviolet, melting point, IR and NMR spectra. The rate equations which were applied over a wide pH range (pH $1.0{\sim}13.0$) were obtained. The substituent effects on Benzoyl styrene derivatives[I]${\sim}$[IV] were studied, and the hydrolysis were facilitated by electron attracting groups. On the basis of the rate equation and substitutent effect and final product, the plausible hydrolysis reaction mechanism was proposed: At pH 1.0${\sim}$pH 9.0, not relevant to the hydrogenl ion concentration, neutral $H_2O$ molecule competitively attacked on the double bond. By contrary. Above pH 9.0, It was proportional to concentration of hydroxidel ion.

High Char-Yield in AN-AM Copolymer by Acidic Hydrolysis of Homopolyacrylonitrile

  • Cheng, Run;Zhou, You;Wang, Jing;Cheng, Yumin;Ryu, Seungkon;Jin, Riguang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • Acrylonitrile (AN)-acrylamide (AM) copolymers were prepared by nitric acidic hydrolysis of homopolyacrylonitrile. The acrylamino group increased as a function of hydrolysis time, while crystallinity decreased. Differential scanning calorimetry and a thermal gravimetric analysis indicated that the acylamino introduced by acidic hydrolysis effectively enhanced the cyclization reaction at low temperature due to the change of the cyclization reaction mechanism. Char-yield of AN-AM copolymers also gradually increased with increasing hydrolysis time. The maximum char-yield was 49.48% when hydrolized at $23^{\circ}C$ in 65% nitric acid solution for 18 h, which was 30% higher than that of non-acidic hydrolysis of homopolyacrylonitrile. Simulation of the practical process also showed an increase of char yields, where the char yields were 55.43% and 62.60% for homopolyacrylonitrile and copolyacrylonitrile, respectively, with a hydrolysis time of 13 h.

A study on the Kinetics velocity for hydrolysis reaction of vanillylidene imine derivatives (Vanillylidene imine 유도체의 가수분해 반응에 관한 속도론적 연구)

  • Sung, Ki-Chun;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.145-150
    • /
    • 1995
  • The Kinetics velocity for hydrolysis reaction of vanillylidene imine derivatives has been measured by ultra-violet ray spectrophotometer in 20wt% $dioxane-H_2O$ at $25^{\circ}C$. It was measured the reaction rate Constant of vanillylidene imine derivatives that can be applied widely following to pH-change at $25^{\circ}C$. Final products that hydrolyzed the vanillylidene imine certified in vanillin and aniline derivative, and the effect of substitution radical that has affected on hydrolysis reaction was largely promoted to reaction rate by electron attrating group in acidity and electron donoring group in basic. From the results of rate constant to hydrolysis reaction, substituent radical effect and final products. It has certified the hydrolysis reaction mechanism of vanillylidene imine derivatives.

Kinetics and Mechanism of Hydrolysis of Insecticidal Imidacloprid (살충성 Imidacloprid의 가수분해 반응 메카니즘)

  • Yu, Sung-Jae;Kang, Moon-Sung;Sung, Nack-Doo
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.53-57
    • /
    • 1997
  • The rate of hydrolysis of insecticidal 1-(6-chloro-3-pyridylmethyl) -2-nitro-iminoimidazolidine (common name; imidacloprid) have been investigated in 15%(v/v) aqueous dioxane at $45^{\circ}C$. From the kinetics and non-kinetics data such as pH-effect, solvent effect(m=0.04, n=0.30 IT m<${\Delta}H^{\neq}=16.14kcal{\cdot}mol^{-1}\;&\;{\Delta}S^{\neq}=-0.03e.u.$), rate equation ($k_{obs.}=4.56{\times}10^{-3}[OH^-]$) and analysis of hydrolysis product, 1-(6-chloro-3-pyridylmethyl-2)-imidazolidinon, the hydrolysis mechanism of imidacloprid is proposed that the specific base catalyzed hydrolysis($K_{OH^-}$) through nucleophilic addition-elimination ($Ad_N-E$) mechanism proceed via intermediate, 1-(6-chloro-3- pyridylmethyl)-2-hydroxy-2-imidazolidinylisonitraminate (I) and ${\beta}$-3-(6-chloro-3-pyridylmethyl)aminoethyl-1-nitrourea(III). And the half-life(t1/2) of hydrolytic degradation at pH 8.0 and $45^{\circ}C$ was about 4.5 months.

  • PDF

Kinetic Studies on the Mechanism of Hydrolysis of Benzohydrazonyl Bromide (Benzohydrazonyl Bromide의 加水分解 反應메카니즘에 관한 反應速度論的 硏究)

  • Ki Sung Kwon;Tae Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.221-228
    • /
    • 1976
  • The kinetics of hydrolysis of hydrazonyl bromides $(p-H,\;p-CH_3,\;p-OCH_3,\;p-Br,\;p-Cl\;&\;p-NO_2)$ have been investigated by UV spectrometry in $60{\%}$ dioxane-water at $25^{\circ}C$ and a rate equation which can be applied over wide pH range was obtained. Below pH2, the rate of hydrolysis of a series of hydrazonyl bromide is accelerated by electrondonating group (${\rho}$ = -0. 94) whereas at the pH values greater than 4, the ${\rho}$-value is 0.54. The rate equation, solvent-, substituent-and bromide ion-effect on the rate of hydrolysis are rationalized in terms of $S_N1$ and $S_N2$ mechanism: below pH 2, the hydrolysis proceed through $S_N2$, however, above pH 4, the hydrolysis is started by the attack of hydroxide ion and in the range pH 2{\sim}$4, these two reactions occur competitively.

  • PDF

Kinetics and Mechanism of the Hydrolysis of N-(p-Nitrophenyl)-benzohydrazonyl Azide Derivatives (N-(p-니트로페닐)-벤조히드라조닐아지드 유도체의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Nack-Do Sung;Ki-Sung Kwon;Tae-Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.150-157
    • /
    • 1978
  • The rate constants for the hydrolysis of the derivatives of N-(p-nitrophenyl)-benzohydrazonyl azide (p-$CH_3,\;p-CH_3O,\;p-NO_2$, p-Cl, p-Br) have been determined by UV spectrophotometry in 50% dioxane-water at $25^{\cicr}C$ and a rate equation which can be applied over wide pH range was obtained. Below pH 5, the rate of hydrolysis of hydrazonyl azides is accelerated by electron-donating group ($\rho$ = -0.47), whereas at the pH values greater than 7, the $\rho$-value is 0.68. The effect of salt, solvent, substituent and azide ion on the rate of hydrolysis are rationalized in terms of $S_N1$ and $S_N2$ mechanism; below pH 5, the hydrolysis proceed through $S_N1$, however, above pH 7, the hydrolysis is started by the attack of hydroxide ion and in the range of pH 5∼7, these two reactions occur competitively.

  • PDF

Cinnamic Acid Derivatives V. the Kinetics and Mechanism of the Hydrolysis of Cinnamenylisophorone Derivatives (신남산 유도체 V. Cinnamenylisophorone 유도체의 가수분해 반응에 대한 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Yun, Cheol-Hun;Ryu, Jung-Wook;Lee, Seok-Woo;Jung, Duk-Chal
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.161-167
    • /
    • 1991
  • The kinetics of hydrolysis of cinnamenylisophorone derivatives (${rho}-H,\;{rho}-Br,\;P-Cl,\;{rho}-OCH_3$) was investigated using ultraviolet spectrophotometry in 20%(v/v) dicxane-$H_2O$ at 25$^{\circ}C$. A rate equation which can be applied over wide pH range (pH $1.0{\sim}13.0$) was obtained. In order to investigate the substituent effects on cinnarnenylisophorone derivatives, Hammett constant was plotted. As the result, the rate of hydrolysis of cinnamenylisophorone derivatives was facilitated by electron donating group. Final products of the hydrolysis were benzaldehyde and isophorone, From the measurement of reaction rate constant according to pH changes, substituent effect, and final products, it was found that the hydrolysis of cinnarnenylisophorone derivatives was initiated by the neutral $H_2O$ molecule which does not dissociated at below pH 9.0, and in the range of pH $9.0{\sim}11.0$ this reaction occurs by $H_2O$ or hydroxide ion competitively, but proceeded by the hydroxide ion above pH 11.0. On the basis of this kinetic study, the reaction mechanism of the hydrolysis of cinnamenylisophorone derivatives was proposed.