DAEHAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 20, No. 3, 1976 Printed in Redublic of Korea

Benzohydrazonyl Bromide 의 加水分解 反應메카니즘에 관한 反應速度論的 研究

權 奇 星·金 泰 麟*

충남대학교 문리과대학 화학과 *고려대학교 이공대학 화학과

(1976. 3. 5 접수)

Kinetic Studies on the Mechanism of Hydrolysis of Benzohydrazonyl Bromide

Ki-Sung Kwon and Tae-Rin Kim

Department of Chemistry, College of Liberal Arts & Science
Chungnam University, Taejeon, Korea
*Department of Chemistry, College of Science and Engineering
Korea University, Seoul, Korea

(Received March 5, 1976)

요 약. 60% dioxane 수용액에서 hydrazonyl bromide의 여러 유도체(*p*-H, *p*-CH₃, *p*-OCH₃, *p*-Br, *p*-Cl및 *p*-NO₂)의 pH에 따르는 가수분해 반응속도를 25°C에서 자외선 분광광도법으로 측정하여 넓은 pH 범위에서 잘 맞는 반응속도식을 구하였다.

가수분해 반응속도에 미치는 치환기효과를 검토하기 위하여 Hammett plot 한 결과 pH 2 이하에서는 $\varphi=-0.94$, pH 4 이상에서는 $\rho=0.54$ 을 얻었다. pH 에 따르는 반응속도 상수의 변화에 미치는 용매효과 브롬음이온효과 및 치환기효과등으로 부터 hydrazonyl bromide의 가수분해는 pH 2 이하에서는 carbonium ion 중간체를 거쳐 반응이 진행되는 S_N1 pH 4 이상에서는 hydrazonyl bromide에 직접 hydroxide ion 이 반응하는 이른바 S_N2 반응이 그리고 pH 2와 pH 4 사이에서는 이두반응이 경쟁적으로 일어남을 알수 있었다.

ABSTRACT. The kinetics of hydrolysis of hydrazonyl bromides (p-H, p-CH₃, p-OCH₃, p-Br, p-Cl & p-NO₂) have been investigated by UV spectrometry in 60 % dioxane-water at 25 °C and a rate equation which can be applied over wide pH range was obtained.

Below pH 2, the rate of hydrolysis of a series of hydrazonyl bromide is accelerated by electron-donating group ($\rho=-0.94$). whereas at the pH values greater than 4, the ρ -value is 0.54. The rate equation, solvent-, substituent- and bromide ion-effect on the rate of hydrolysis are rationalized in terms of S_N1 and S_N2 mechanism: below pH 2, the hydrolysis proceed through S_N2 , however, above pH 4, the hydrolysis is started by the attack of hydroxide ion and in the range pH 2 \sim 4, these two reactions occure competitively.

1. 서 혼

Azomethine의 치환반응은 탄소원자에서의 치환과 질소원자에서의 치환으로 크게 나눌 수 있다. 탄소원자에 전자 끄는기가 결합되어 있으면 탄소원자에 대한 친핵성 치환반응이 일어난다. 이 반응에 대한 정성적인 연구와 유기합성 특히 헤테로고리화합물 합성의 중간체로서의 응용은 1.2 이미 많이 보고되어 있을 뿐만 아니라 그의 반응메카니즘도 정성적으로는 잘 설명되고 있다. 그러나 정량적이고 반응속도론적인 연구는 그리 많이 볼수 없다.

Scott³가 연구한 산성에서 N-arylbenzohydrazidic bromide 의 가수분해반응 tetrazolylhydrazidic bromide⁴의 여러치환체들은 중간체인 azocarbonium ion을 거치는 S_N1 과정에 의해 일어남을 밝혔으며 이와 유사한 반응은 각종 imidoyl halide 유도체들의 반응에서도 많이 볼수 있다^{5,6}.

중간체로서 1.3 dipolar ion 이 생긴다는 사실은 Smith⁷가 처음으로 밝혔으며 그후 Huisgen⁸의 일련의 연구로 그 보편성이 더욱 인정 되었다. 이와같은 1.3 dipolar ion 이 여러가지 고리첨가반응을 하는 것이 알려져 있으나⁹ 그의 메카니즘에 관해서는 약간의 논란도 없지 않았다¹⁰.

Clovis¹¹는 N-(phenyl)benzohydrazidic chloride을 triethylamine의 염기 존재하에서 에틸렌과 반응시켰던 바 1.3 dipolar ion을 거치는 고리첨가 생성물이 생성됨을 알았고 Gibson¹²은 o-nitrobenzylidene 2.4-dibromophenyl hydrazonyl bromide가 염기촉매하에서 반응할때 1.3 dipolar ion의 인접니트로기에 의해 분자내 친핵성 치환반응이 일어남을 밝혔다. 이와같이 중간체로서 1.3 dipolar ion에 생기는 반응은 Barnish¹³가 연구한 N-(2-nitro-4-bromophenyl)-benzohydrazonyl bromide의 고리생성반응, Bacchetti¹⁴의 carbethoxyhydrazidic halide의 분해반응에서도 볼 수 있다.

Butler¹⁵는 hydrazidic halide 의 반응메카니즘 을 S_N1 및 S_N2 반응으로 진행 되리라는 것을 암시하였다. 그러나 S_N1 형 반응의 중간체인 acylium ion 의 생성 가능성에 대해서는 약간의 논란¹⁶이 되기도 하였으나 치환기효과¹⁷, 염의 영향¹⁸, 공통이온효과 및 용매의 영향¹⁹ 등으로 부터 타당함을 알았다.

Hegarty²⁰는 70% dioxane 속에서 hydrazidic halide가 가수분해 될때 pH에 따르는 속도상수의 변화를 그려본 결과 pH 3 이하에서는 수소이 온농도에 무관하나 pH 5 이상에서는 pH에 따라 급격히 증가함을 알았다. 산성용때에서 일어나는 hydrazidic halide의 가수분해는 중성 및 염기성에서 일어나는 반응과는 달리 매우 복잡하여 용매의 성질과 치환기가 전자를 끄는 힘에 따라 또는 입체적인 영향에 의해 그 반응메카니즘이 변화함도 알았다²¹.

본 연구에서는 N-(p-nitrophenyl)benzohydrazonyl bromide의 arylidene 고리에 각종 치환기가 결합된 여러 유도체를 합성하여 반응속도와 메카게즘에 미치는 여러가지 영향과 아울려아직 잘 알려져 있지않은 산성과 중성용매에서의 가수분해 속도상수를 측정하여 넓은 pH 범위에서 실험사실과 잘 맞는 반응속도식을 구해 그의 반응메카게즘을 정량적으로 밝히고저 한다.

2. 실 췸

1,4-dioxane 은 일본제 Wako 시약 (Reagent grade)을 사용하였고 메탄을 및 에탄올은 각각 재중류하여 사용하였다. 아세톤, 질산칼륨, 초산 및 초산나트륨등은 각각 일본 Kishida 제 (Reagent grade)을 그대로 사용하였으며 각종 hydrazonyl bromide 는 Burgess 와 Gibson²²의 방법에 따라 각종 benzohydrazone 과 브롬으로 부터 합성하였다.

모든 반응은 dioxane- H_2O 의 60% 용매속에서 하였으며 KNO_3 용액을 가해 전체 이온세기를 0.1이 되게끔 하였다. 반응속도는 $25\,^{\circ}C$ 의 항은기 속에서 $100\,\,\mathrm{m}l$ 들이 메스플라스크속에 완충용액 $95\sim98\,\mathrm{m}l$ 를 넣어 $25\,^{\circ}C$ 로 한다음 여기에 $1.0\times10^{-3}\,M$ 의 hydrazonyl bromide의 dioxane용액 $2\,\mathrm{m}l$ 를 피펫으로 넣어 잘 혼합하여 시간에 따르는 시료물질의 농도변화를 spectrophotometer (Beckman DUII)에 의해 일정한 파장(p- $H: \lambda_{\max}=375\,\mathrm{nm}, p$ - $CH_3: \lambda_{\max}=365\,\mathrm{nm}, p$ -

 $OCH_3: \lambda_{max} = 360 \text{ nm}, \quad p-\text{Br}: \lambda_{max} = 378 \text{ nm}, \quad p-\text{Cl}: \lambda_{max} = 378 \text{ nm} 및 \quad p-\text{NO}_2: \lambda_{max} = 385 \text{ nm})에서 촉정하였다.$

3. 결 과

N-(p-Nitrophenyl)-benzohydrazonyl Bromides의 가수분해. N-(p-nitrophenyl)-benzohydrazonyl bromides을 dioxane-H₂O 혼합용배에 녹여 그의 농도가 2.00×10⁻⁵M이 되도록 하여 일정한 pH 에서 시간에 따르는 농도변화 즉 optical density(OD)를 촉정하여 log OD 값을 시간에 대해 그려본 결과 선형적인 일차반응임을 알았다.

한 예로 pH 3.50에서 N-(p-nitrophenyl)-benzohydrazonyl bromide의 375 nm 에서의 시간에 따르는 $\log OD$ 의 변화를 나타낼 결과는 $Fig.\ 1$ 과 같으며 이 기울기에서 구한 일차 반응속도상수 k_{obs} 는 5.75×10^{-7} sec $^{-1}$ 이다, $Table\ 1$ 은 같은 방법으로 여러 pH 에서 구한 일차반응속도상수값 들이다. 이 k_{obs} 의 \log 값을 여러 pH 에 대해 그려본 결과는 $Fig.\ 2$ 와 같다 $Table\ 2$ 는 hydrazonyl bromide의 각종 유도체들에 대해 가 pH 에서 같은 방법으로 구한 일차반응속도상수 (k_{obs}) 을 나타낸 것이다.

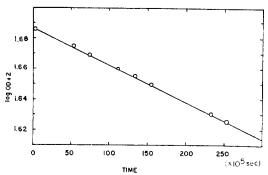


Fig. 1 The plots of log OD vs. time for the hydrolysis of N-(p-nitrophenyl)-benzohydrazonyl bromide at pH 3.50, 25 °C and 0.10 ionic strength.

4. 고 찰

반응속도식, Fig. 1 에서 보는 바와같이 일정 한 pH에서 가수분해 속도는 hydrazonyl bromide (HB)의 농도의 일차에 비례한다. 그리고 Fig. 2 에서 보는바와 같이 pH에 따르는 반응속도상수, kobs는 두부분 즉 hydroxide ion 농도에 비례하는 부분과 pH에 무관하는 부분으로 구성되어 있다고 생각할 수 있다. 이와같은 경향은 각종 다른 유도체들에서도 찾아볼 수 있다. 따라서 반응속도식은 일반적으로 다음과 같이 나타낼 수 있다.

Table 1. First-order rate constants for the hydrolysis of N-(p-nitrophenyl)-benzohydrazonyl bromide in 60 % dioxane-H₂O at 25 °C.

р Н	k _{ob} , (sec-1)	$k_{cal}(sec^{-1})$
0. 50	1. 61×10 ⁻⁷	1. 25×10 ⁻⁷
1.00	$0.86{ imes}10^{-7}$	1. 25×10 ⁻⁷
1. 50	1. 25×10^{-7}	1. 27×10 ⁻⁷
2.00	1.44×10^{-7}	1. 33×10 ⁻⁷
2. 50	1. 46×10^{-7}	1. 45×10 ⁻⁷
3. 00	3.07×10^{-7}	2. 14×10 ⁻⁷
3. 50	5.75×10^{-7}	4. 07×10 ⁻⁷
4.00	8. 75 \times 10 ⁻⁷	1.01×10^{-6}
4. 50	3. 30×10 ⁻⁶	2.94×10 ⁻⁶
5, 00	8. 91×10 ⁻⁶	8. 91×10 ⁻⁶
5.50	4.71×10^{-5}	2.83×10 ⁻⁵
6.00	6.91×10^{-5}	8 92×10 ⁻⁵
6. 50	_	2.82×10 ⁻⁴
7.00	_	8. 92×10 ⁻⁴

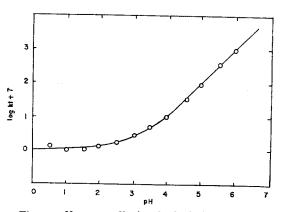


Fig. 2 pH-rate profile for the hydrolysis of N-(p-nitrophenyl)-benzohydrazonyl bromide at 25 °C and 0.10 ionic strength; circles are experimental points and curve is drawn according to equation (2).

Table 2 First-order rate Constants for the hydrolysis of N-(p-nitrophenyl)-benzohydrazonyl bromide derivatives in 60 % dioxane-H₂O at5 °C 2.

		$10^7 \cdot k_{ m obs}$ (see		:-1)		
pН	<i>p</i> −NO ₂	p−OCH ₃	<i>p</i> −CH ₃	<i>p</i> −Cl	∌-Br	
0.50	0.64	1.79	1.31	0. 92	1, 10	
1.00	0.71	3.47	1.45	0.92	1. 37	
1. 50	0.78	3, 37	1. 35	1.45	0. 98	
2. 00	0.81	3. 23	2. 17	1.06	1. 18	
2.50	2. 16	3. 32	2.36	1.05	1.30	
3.00	4. 23	3. 15	I. 49	2. 19	1. 58	
3, 50	9. 33	6. 14	3, 65	2, 53	1.77	
4.00	40. 1	8.80	6.00	22.0	5. 41	
4. 50	1.60	25. 5	25.7	82. 5	16. 5	
5.00	174	71.8	81.5	255	29.9	
5. 50	640	368	285	432	78.5	
6.00	2340	1010	736	954	249	
6.50	25100	2450	2550	2800	1490	

Rate =
$$-\frac{d(HB)}{dt}$$
 := $k_{obs}(HB)$
= $\{k_0 + k_{OH}OH^-\}$ (HB)
: $k_{obs} = k_0 + k_{OH} K_w/(H_{30}^+)$ (1

여기서 k_0 는 pH에 무관하는 부분, 더 정확하 게는 물의 촉매하에 진행되는 가수분해 속도상 수이며 k_{OH} 는 hydroxide ion 에 의해 진행되는 속도상수이고 K_w 는 물의 용해도적이다.

한 예로 N-(p-nitrophenyl)-benzohydrazonyl bromide 에 대한 각 속도상수는 다음과 같이 구하였다. 높은 pH쪽에서 직선을 그어 pH4.00 및 pH5.00의 속도상수값으로 부터 $k_{\text{OH}}=8.94 \times 10^3$ 을 얻을수 있고 k_0 는 낮은 pH 즉 pH1.50 부근에서의 값 1.25×10^{-7} 을 취한다. 이 값들과 $K_w=1.00\times 10^{-14}$ 을 (1)식에 대입하면

$$k_{\text{obs}} = 1.25 \times 10^{-7} + 8.94 \times 10^{-3} [\text{OH}^-]$$

= 1.25×10⁻⁷+8.94×10⁻¹¹/(H₃+O] (2)

Fig. 2의 실선은 (2)식에 의해 k_{obs} 을 구해 pH 에 따라 $\log k_{\text{obs}}$ 을 그린 것이다. 실험치와 이론치가 잘 일치함을 볼수 있다.

같은 방법으로 각종 다른 hydrazonyl bromide 의 유도체들에 대해 구한 반응속도식은 다음과

Table 3. Rate constants for the hydrolysis of N-(p-nitrophenyl)-benzohydrazonyl bromide in mixed solvents at pH 5.50 and 28 °C.

	Solvent, Vol. (%)	$k(\sec^{-1})$
MeOH-H ₂ O	90-10	5. 94×10 ⁻⁶
	80 - 20	5, 26×10 ⁻⁵
	70-30	5.71×10 ⁻⁶
	60 - 40	6. 14×10 ⁻³
	50 - 50	6. 58×10 ⁻⁶
	40-60	6. 37×10 ⁻⁵
Dioxane-H ₂ O	85-15	5. 47×10 ⁻⁵
	80-20	$6.90{ imes}10^{-9}$
	75-25	6.91×10 ⁻⁹
	70 - 30	7.48×10 ⁻⁵
	60 - 40	7. 08×10 ⁻⁵

같다.

N-(p-nitrophenyl)-p-methoxybenzohydrazonyl bromide:

$$k_{\rm obs} = 1.79 \times 10^{-7} + 7.00 \times 10^{-11} / ({\rm H_3^+O})$$
 (3)
 $N - (p - {\rm nitrophenyl}) - p - {\rm methylbenzo}$

hydrazonyl bromide:

$$k_{\text{abs}} = 1.35 \times 10^{-7} + 7.36 \times 10^{-11} / \{H_3 + O\}$$
 (4)

N-(p-nitrophenyl)-p-chlorobenzohydrazonyl bromide:

$$k_{\text{obs}} = 9.21 \times 10^{-8} + 954 \times 10^{-11} / (\text{H}_3 + \text{O})$$
 (5)

N-(p-nitrophenyl)-p-bromobenzohydrazonyl bromide:

$$k_{\text{obs}} = 1.00 \times 10^{-7} + 2.45 \times 10^{-11} / [\text{H}_3^+\text{O}]$$
 (6)

N-(p-nitrophenyl)-p-nitrobenzo-

hydrazonyl bromide:

$$k_{\text{obs}} = 6.40 \times 10^{-8} + 1.24 \times 10^{-10} / (\text{H}_3 + \text{O})$$
 (7)

용매효과. 물에 메탄을 혹은 dioxane의 혼합비율을 달리했을 때 N-(p-nitrophenyl)-benzo-hydrazonyl bromide의 반응속도상수를 측정한결과는 Table 3 및 Table 4 와 같다. 높은 pH에서는 뚜렷한 용매효과가 없는 반면에 낮은 pH에서는 용매효과가 현저하게 나타나고 있음을 볼수 있다. 즉 낮은 pH용액의 경우 물의 함량이 많아질 수록 반응속도가 현저히 증가함을 볼 수 있다.

Table 4. Rate constants for the hydrolysis of N-(p-nitrophenyl)-benzohydrazonyl bromide in MeOH-H₂O mixed solvents at pH 1.50 and 28°C.

	Solvent, Vol. (%)	$k((\sec^{-1})$
MeOH-H ₂ O	90~10	4. 91×10 ⁻⁷
	85~15	5. 10×10-7
	80~20	6. 14×10 ⁻⁷
	75~25	6.58 \times 10 ⁻⁷
	70~30	7. 38×10^{-7}
	65~35	8. 90×10 ⁻⁷
	60~40	13. 90×10^{-7}

이것은 반응속도 결정단계에서 $S_N 1$ 반응때와 같이 전하의 분리가 반응물질 보다 던욱 크게 일어남을 추정할 수 있다.

지환기 효과. pH 2.00 및 2.50 에서의 $\log k_{obs}$ 값을 σ 값에 대해 그려본 결과는 Fig. 3 및 Fig. 4 와 같다. 이 직선 부분의 기울기로 부터 구한 ρ 값은 다같이 -0.94이다. 이것은 S_N1 반응 때와 같이 반응이 일어나는 곳의 전자분포가 커지면 음 하전을 가진 이탈기가 더욱 쉽게 떨어져 나갈 것 이며 생긴 양이온도 전자주는기에 의해 더욱 안 전화 되므로 반응속도는 빨라진다고 설명할 수 있다. 그러나 p-NO2 치환체의 경우는 직선에서 약간 벗어나고 있다. 이것은 아마 NO2기는 전 자를 끄는 힘이 매우 크므로 반응이 일어나는 탄 소의 양하전이 커짐에 따라 브롬음이온의 이탈 이 더욱 어렵게 되어 브롬음이온이 떨어져 나가 기전에 친핵성이 약한 물분자 까지도 적극적으 로 참여하기 때문이 아닌가 생각된다. 다시말하 면 브롬음이온의 이탈이 속도결정단계가 아닌 다른 반응메카니즘에 의해 반응이 진행되기 때 문이라 생각된다.

한편 Fig. 5는 pH 6.00에서 Hammett plot를 한 것이다. 낮은 pH 때와는 달리 ρ 값이 0.54인 좋은 직선성을 보여주고 있다. 이것은 반응속도가 치환기의 전자를 끄는힘이 클수록 빨라짐을 나타내며 낮은 pH 용액에서와는 다른 반응메카니즘 즉 반응중심의 양전하가 클수목 친핵성 시약이 더욱 빨리 반응하는 이른바 S_{N2} 형반응에의해 가수분해가 진행된다고 하면 실험사실을 잘설명할 수 있다.

위의 용매효과와 치환기효과로 부터 N-(p-nitrophenyl)-benzohydrazonyl bromide 의 가수 분해는 낮은 pH에서는 다음과 같은 S_NI 형 반응에 의해 진행된다고 하면 잘 설명이 된다.

$$X - C = N - NH - NO_{2} \xrightarrow{k_{0}}$$

$$[X - C = N - NH - NO_{2}] + Br$$

$$[X - C = N - NH - NO_{2}] + Br$$

$$OH$$

$$X - C = N - NH - NO_{2}$$

$$OH$$

$$X - C - N - NH - NO_{2}$$

$$OH$$

즉 C—Br 결합이 끊어져 azocarbonium ion 이 생기는 과정이 반응속도 결정단계이며 이 azocarbonium ion 은 곧 물과 반응하여 enol form 을 거쳐 안정한 keto form 인 hydrazide 로 되는 것이다. 이때에 생긴 hydrazide 는 IR spectrum 과 녹는점(p-H;m.p=192°C(lit. 193°C), p-CH₃; m.p=228°C(lit. 230°C), p-OCH₃; m.p=190°C, p-Br;m.p=245°C(lit. 248°C), p-Cl; m.p=242°C(lit. 245°C))을 촉정하여 확인 하였다. 위 반응메카니즘에서 azocarbonium ion 이 생

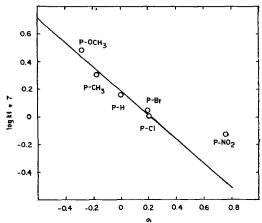


Fig. 3. Hammett plot for the hydrolysis of the hydrazonyl bromides at pH 2.00 and 25 $^{\circ}$ C in 60 $^{\circ}$ C dioxane-H₂O.

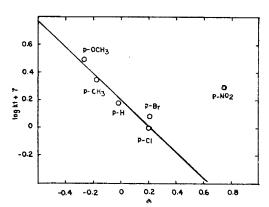


Fig. 4. Hammett plot for the hydrolysis of the hydrazonyl bromides at pH 2.50 and 25° C in 60% dioxane-H₂O.

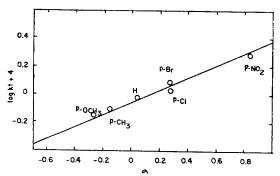


Fig. 5 Hammett plot for the hydrolysis of the hydrazonyl bromides at pH 6.00 and 25 °C in 60 % dioxane-H₂O.

성되는 단계가 속도결정단계이기 때문에 전자주는기에 의해 반응속도는 빨라질 것이며 그 결과는 Fig. 3에서와 같이 실험사실과 잘 부합되고 있다. 그러나 $p-NO_2$ 치환체의 경우는 NO_2 기의 강한 전자끄는힘 때문에 브롬원자의 이탈은 늦어져 완전히 떨어져 나가기 전에 새로운 결합이 형성 되므로 S_N 1 성격은 약화되어 낮은 pH에서 이며 S_N 2 성격이 많이 기여하고 있기 때문이 아닌가 생각된다.

위에서 단순한 이온화 메카니즘에 의한 azocarbonium ion 중간체의 생성반응의 타당성을 뒷 바침 해 주는 또 하나의 실험적 사실은 Table 4 에서와 같이 용매효과에서도 찾아 볼수 있다. 즉 물함량의 증가로 용매의 이온화 능력이 커집 에 따라 반응속도도 빨라지고 있음을 볼수 있 다.

Table 5. The changes of rate constants for the hydrolysis of N-(p-nitrophenyl)-bezohydrazonyl bromide with the concentration of bromide ion in 60 % dioxane $-\text{H}_2\text{O}$ at 28 °C pH=2.00 & pH=5,000

pН	$\{Br^-\} (mol \cdot l^{-1})$	$k(\sec^{-1})$
2.00	0. 01	5. 64×10 ⁻⁷
2.00	0. 03	4, 55×10 ⁻⁷
2.00	0.05	3.38×10^{-7}
2.00	0.07	2.37×10^{-7}
2.00	0.09	1.15×10 ⁻⁷
5. 00	0. 01	$9.09{ imes}10^{-6}$
5.00	0. 03	8. 77×10^{-5}
5. 00	0.05	8. 27×10 ⁻³
5.00	0.07	8. 67×10 ⁻³

이것은 Fainberg¹⁹가 지적한 바와 같이 속도전 정 단계에서 carbonium ion 생성반응과 같은 전 하증가 반응에서 볼수 있는 일반적인 현상으로 설명된다.

Table 5는 pH 2.00 와 pH 5.00 에서 브롬이온 농도변화에 따르는 속도상수 값의 변화를 나타낸 것이다. S_N 2형 반응이 진행되는 pH 5.00 에서는 브롬음이온의 농도변화에 따라 반응속도상수에는 큰 변화가 없지만 pH 2.00에서는 브롬음이온의 농도가 증가함에 따라 반응속도는 오히려 감소하고 있다. 이것은 S_N 1형 반응에서 일반적으로 볼 수 있는 mass law effect 때문이다. 이와같은 일련의 사실들은 낮은 pH 에서는 S_N 1형 메카니즘에 의해 반응이 진행됨을 뜻 받침해주고있다.

pH4 이상에서의 가수분해 반응은 Fig. 2에서 보는 바와같이 pH에 비례하고 있어 낮은 pH 때와는 다르리라 생각된다. Fig. 5에 나타난 치환기효과와 발응축도가 hydroxide ion 동도에 비례한다는 사실로 부터 다음과 같은 $S_{N}2$ 반응매카니즘을 제안 하였다.

$$X - \left(\begin{array}{c} - C = N - NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Br \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(X - \left(\begin{array}{c} - C = N - NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C = N - NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C = N - NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C = N - NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NO_2 + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - NH - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - \left(\begin{array}{c} - C + NH - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + NH - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right) \\ \stackrel{k_{OH}}{\longrightarrow} \left(\begin{array}{c} - C + OH^{-1} \\ Slow \end{array}\right)$$

$$-\rightarrow Br^- + X - - - C = N - NH - - NO$$
OH
$$- C - NH - NH - - NO_2$$
O

위 만응은 친핵성이 센 hydroxide ion 이 메틴 탄소원자를 직접 공격하므로서 시작되며 생긴 엔을형인 이민알코올은 곧 안정한 아미드로 된 다.

Triethylamine 과 같은 열기성 용대 속에서 hydrazonyl halide 나 α-halogen-oxime 에 대하여 Huisgen⁸을 위시하여 많은 사람들은 다음과 같은 1.3 dipolar ion 메카니즘에 의해 반응이 진행된다고 설명하였다.

$$\begin{array}{c} R-C=N-NH-Ar \xrightarrow{NEt_3(\frac{9}{8}vij)} \\ X \\ R-C=N-N-Ar \xrightarrow{H_2O} R-C-NH-NH-R \\ O \\ R-C=N-OH \xrightarrow{NEt_3(\frac{9}{8}vij)} \bigoplus_{\bigoplus_{i=1}^{N}} R-C=N-O \\ X \end{array}$$

그러나 이 반용들은 산성이나 중성이 아닌 센염기성인 triethylamine속에서 이루어진 것들이다. 만일 dioxane- H_2 O용매에서도 1.3 dipolarion에 의해 반응이 진행 된다면 메틴탄소원자의 음전하가 커짐에 따라 보름음이온이 더욱 쉽게 떨어져 나감으로 ρ 값은 오히려 영보다 적은 값을 취해야 할 것이다. 그러나 위에서 보는 바와 같이 ρ =0.54이다.

Hegarty 와 Cashman²⁰ 은 1.3 dipolar ion 메카니즘에 의해 반응이 진행되는 경우 메틴단소원자에 알킬기가 결합하고 질소원자에 아릴기가 결합된 화합물 (1)에 대하여 치환기효과를 조사한결과 ρ>0 인데 반해 알킬기 대신 아릴기가 결합된 화합물 (II)에 있어서는 ρ<0 임을 알았다. 이것은 두 화합물의 반응메카니즘이 다름을 암시해 주고 있다.

1.3 dipolar ion 이 아닌 $S_{N}2$ 메카니즘에 의해 가수분해반응이 진행되리라는 것은 그의 pKa 값에서도 짐작할 수 있다. 대체로 hydrazonyl bromide의 pKa 값은 약 10이다. 예컨데 N-(p-nitrophenyl)-p-nitrobenzohydrazonyl bromide 의 pKa 는 10.17로서 pKa 에서 약 pKa 는 10.17로서 pKa 에서 약 pKa 는 10.17로서 pKa 에서 약 pKa 는 10.17로서 pKa 이 음이은의 농도는 pHa 에서 약 pKa 는 무시할 수 있는 것이다. Huisgen 들에 의해 밝혀진 pKa 를 것이다. Huisgen 등에 의해 밝혀진 pKa 에너의 대문에 서외가 쉽게 제거되어 pKa 입어났기 때문에 pKa 에서 열어났기 때문에 pKa 를 것이다.

Table 1에 있는 계산치는 위와 같이 S_N1 및 S_N2 반응메카니즘을 가정하여 구한 반응속도식 $(2)\sim(7)$ 에 따라서 산출된 값이며 Fig. 2의 곡선도 이 식에 의해 그려진 것이다. 여기서 실험 치와 계산치가 잘 일치하고 있음을 알 수 있다.

반응속도식으로 부터 pH2 이하에서는 S_{N} 1 에 의해 pH4이상에서는 S_{N} 2 반응메카니즘에 의해 가수분해반응이 진행되며 $2\sim4$ 사이에서는 이두 반응이 경쟁적으로 일어남을 알수 있을 뿐만 아니라 이 두 반응의 비율도 쉽게 계산한 수 있다.

인 용 뿐 현

- S. Patai, "The Chemistry of the Carbon-Nitrogen Bond" P. 597, John Wiley and Sons, York-London-Sydeny, 1970.
- H. Ulrich, "The Chemistry of Imidoyl Halide," Ch. 7, 173, New York. Plenum Press, 1968.
- F. L. Scott, M. Cashman and A. F. Hegarty, J. Chem. Soc. (B), 1607 (1971).
- 4. a) F. L. Scott and D. A. Cronin, Tetrahedron Letters, 715 (1963); b) F. L. Scott and M. N.

- Holland, Proc. Chem. Soc., 106 (1962).
- I. Ugi, F. Beck and U. Fetzer, Chem. Ber., 95, 126 (1962).
- R. Buyle and H. G. viehe, Tetrahedron, 24, 4217 (1968).
- 7. L. I. Smith, Chem. Rev. 23, 193 (1938).
- R. Huisgen, Angew. Chem. Intern. Ed. Engl.,
 565 (1963).
- R. Huisgen, Anger. Chem. Intern. Ed. Engl.,
 633 (1963).
- a) R. Huisgen, J. Org. Chom., 33, 2291 (1968);
 b) R. A. Firstone, ibid., 2285;
 c) S. Morrocchi,
 A. Ricca and A. Zanarotti, Tetrahedron Letters,
 3329 (1969);
 d) S. Morrocchi, A. Ricca and
 Zanarotti, ibid., 3215 (1970).
- J. S. Clovis, A Eckell, R. Huisgen and R. Sustmann, Chem. Rev., 100, 60 (1967).
- M. S. Gibson, Tetrahedron, 18, 1377 (1962).
 I. T. Barnish and M. S. Gibson, Chem. and Ind.,

- 1699 (1965).
- 14. T. Bucchetti, Gazz. Chem. Ital., 91, 866 (1961).
- R. N. Butler and F. L. Scott, Chem. and Ind., 1216 (1970).
- M. L. Bender and M. C. Chen, J. Amer. Chem. Soc., 85, 30 (1963).
- 17. F. L. Scott and J. B. Aylward, Tetrahedron Letters, 841, (1965).
- J. B. Aylward and F. L. Scott, J. Chem. Soc. (B), 1080 (1969).
- A. H. Fainberg and S. winstein, J. Amer. Chem. Soc., 78, 2770 (1956)
- A.F. Hegarty, M.P. Cashman and F.L. Scott, Chem. Comm., 684 (1971).
- A. F. Hegarty, M. P. Cashman and F. L. Scott,
 J. Chem. Soc., perkn II 44 (1672)
- J. M. Burgess and M. S. Gibson, Tetrahedron,
 18, 1001 (1962).