• Title/Summary/Keyword: hydrolysate

Search Result 722, Processing Time 0.037 seconds

Isolation and Characterization of Antioxidative Peptides from Enzymatic Hydrolysates of Yellowfin Sole Skin Gelatin (가자미피 젤라틴 가수분해물로부터 항산화성 펩티드의 분리${\cdot}$정제 및 특성)

  • KIM Se-Kwon;LEE Hyun-Chel;BYUN He-Guk;JEON Yon-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.246-255
    • /
    • 1996
  • To develop a natural antioxidative peptide, the gelatin was extracted from fish (Yellowfin sole) skin by hot $water(50^{\circ}C)$ extraction method and hydrolyzed with Alcalase, pronase and collagenase through a continuous 3-step membrane reactor. Each step enzymatic hydrolysates were determined the antioxidative activity and their synergistic effects, compared with $\alpha-tocopherol$ and butylated hydroxytoluene (BHT). Also, we tried to investigate the antioxidative disposition of peptide which was successfully separated by gel filtration, ion-exchange chromatography, and HPIC in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide (TBHP). Second step enzymatic hydrolysate (SSEH) among all hydrolysates and $\alpha-tocoperol$ was showed the strongest antioxidative activity. The optimum concentration of antioxidative activity for SSEH was $1\%(w/w)$ in linoleic acid. The synergistic effects were increased in using the hydrolysate with tocopherol and BHT. In the presence of the peptide isolated from SSEH, supplemented hepatocytes exposed to TBHP showed that delayed cell killing and decreased significantly the lipid peroxidation, compared with hepatocytes not cultured with isolated peptide.

  • PDF

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 1. Fish Sauce from Mackerel Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 1. 고등어 폐기물을 이용한 어장유의 속성제조 및 품질)

  • HAN Bong-Ho;BAE Tae-Jin;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.109-124
    • /
    • 1990
  • A rapid processing method for fish sauce of high quality stability and favorable flavor was investigated using mackerel waste as starting material. The chopped waste was homogenized with water and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid, Pacific Chem. Co.) and Alcalase ($1.94\cdot10^4$ U/g solid, Novo) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal pH and temperature for the hydrolysis with Complex enzyme-2000 were 8.0 and $50^{\circ}C$, and those with Alcalase were 9.0 and $55^{\circ}C$. In both cases, the reasonabe amount of added water and enzyme concentration based on the waste weight were $40\%,\;3\%$ and hydrolyzing time was 100 min. Thermal treatment of the hydrolysate with $6\%$ of invert sugar for 2 hours at $90^{\circ}C$ was adequated to inactivation of the enzymes and pasteurization of the hydrolysate. Flavor, taste and color of the hydrolysate were improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with $6\%$ of invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen of the raw waste was $93.7\~94.9\%$, and $87.6\~87.9\%$ of the total nitrogen in the fish sauce was in the from of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.0\~14.5\%$ and less than $10mg\%$, respectively. The fish sauce was stable on bacterial growth during the storage of 60 days at $26\pm3^{\circ}C$ and the quality was also maintained.

  • PDF

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 2. Fish Sauce from Sardine Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 2. 정어리 폐기물을 이용한 어장유의 속성제조 및 품질)

  • BAE Tae-Jin;HAN Bong-Ho;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.125-136
    • /
    • 1990
  • To develope a rapid processing method for fish sauce, processing conditions of fish sauce from sardine waste was investigated. The chopped waste was homogenized and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid) and Alcalase($1.94\cdot10^4$ U/g solid) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal temperature for the case of hydrolysis with Complex enzyme-2000 was 50 and that with Alcalase was $55^{\circ}C$. In both cases, the reasonable pH, amount of water for homo-genization, enzyme concentration and hydrolyzing time were 8.0, $40\%$ (W/W), $3\%$ and 100 min, respectively. Heating of the filtrated hydrolysate for 2 hours at $90^{\circ}C$ with $6\%$ of invert sugar was suitable for pasteurization of the hydrolysate and inactivation of enzymes. Flavor, taste and color of the hydrolysate was improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen in the raw sardine waste was $91.2\~92.3\%$ and $87.2\~87.8\%$ of the total nitrogen in the fish sauce was in the form of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.2\~14.4\%$ and less than $10mg\%$, respectively. The fish sauce was stable during the storage of 60 days at $26\pm3^{\circ}C$ on bacterial growth and its quality was also maintained.

  • PDF

Effect of Partial Substitution of Dietary Spray-dried Porcine Plasma or Fishmeal with Soybean and Shrimp Protein Hydrolysate on Growth Performance, Nutrient Digestibility and Serum Biochemical Parameters of Weanling Piglets

  • Sun, Zhantian;Ma, Qiugang;Li, Zhongrong;Ji, Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.1032-1037
    • /
    • 2009
  • The present experiment was conducted to study the effects of partial replacement of spray-dried porcine protein (SDPP) or fish meal with soybean and shrimp protein hydrolysate (SSPH) on growth performance, nutrient digestibility and serum biochemical parameters in weaned pigs. Two hundred and forty 21${\pm}$2 d old pigs ((Pietrain${\times}$Duroc)${\times}$(Landrace${\times}$Large Yorkshire)) with initial weight of 6.9${\pm}$0.5 kg were randomly allocated to five dietary treatments with six replicates per treatment and eight piglets per replicate. The control diet (T1) contained 2% SDPP and 6% fishmeal, and SDPP for experimental diets T2 and T3 was replaced with 1% and 2% SSPH, respectively, on an iso-nitrogenous basis. The fishmeal for experimental diets T4 and T5 was replaced with 1% and 2% SSPH, respectively, also on an iso-nitrogenous basis. The experimental period was 21 days. The results showed that weaned piglets fed the diets containing 1% and 2% SSPH as a replacement for SDPP had similar average daily gain (ADG), average daily feed intake (ADFI), feed/gain (F/G), diarrhea rate and serum biochemical indices e.g. blood urea nitrogen (BUN), total serum protein (TP), albumin to globulin ratio (A/G), globulin (GLO), serum glucose (GLU), and immunoglobulin G (IgG) to those fed the control diet during 0-10 d and 0-21 d of the experiment. The substitution of 1% SSPH on an iso-nitrogenous basis for fish meal appeared to be beneficial for ADG (p = 0.59) and ADFI (p = 0.23) of piglets during the overall period. The digestibility of calcium was higher (p<0.01) in pigs fed diets containing SSPH than on the control diet. Addition of 1% SSPH on an iso-nitrogenous basis for fish meal could increase the digestibilities of dry matter and energy of the diet. Dietary replacement of fish meal with 1% and 2% SSPH had no effect on the concentrations of BUN, TP, A/G, GLO, GLU, and IgG. In conclusion, dietary SDPP or fish meal could partially replace SSPH without any adverse effect on growth performance, nutrient digestibility and serum biochemical parameters in weaned piglets.

Characteristics of Whey Protein (WPC-30) Hydrolysate from Cheese Whey (치즈유청으로부터 제조한 유청단백질 가수분해물의 특성에 관한 연구)

  • Yoon, Yoh-Chang;An, Sung-Il;Jeong, A-Ram;Han, Song-Ee;Kim, Myeong-Hee;Lee, Chang-Kwon
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.435-440
    • /
    • 2010
  • Whey protein concentrate (WPC) is widely used to increase the nutritional and functional properties of food. In this study, the physiochemical and functionality of WPC-30 hydrolysates were examined to evaluate the possibility of application in the food industry. The WPC-30 was manufactured using ultrafiltration and spray-drying, and then hydrolyzed with proteolytic enzyme including alcalase, flavourzyme, nuetrase and protamex. Enzymatic hydrolysis had a significant influence on the physicochemical properties as evident from the increased foaming capacity, solubility. Alcalase caused highest protein hydrolysis (3.26%) and the bitterness. Foaming capacity was largest in WPC-30 hydrolysate treated with flavourzyme. Protein solubility at various levels of pH was highest in protamex-treated WPC-30 hydrolysate. However, the solubility of WPC-30 hydrolysates was significantly improved in alkaline condition than in acidic and neutral conditions. The study revealed that spray dried enzyme modified WPC can be used in various functional food.

Utilization of the Protein Hydrolysates of Skipjack Tuna Viscera (가다랭이 내장 단백질 가수분해물의 이용)

  • Kim, Sung-Min;Ha, Jung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.141-146
    • /
    • 1995
  • For the effective utilization of skipjack tuna viscera, a study was carried out to investigate the applicability of viscera protein hydrolysate (VPH) as a protein supplement in the processing of imitation sauce and bread. The optimum extraction and hydrolyzation conditions for the production of viscera protein concentrate (VPC) and viscera protein hydrolysate (VPH) were determined. Boiled viscera could be extracted by ethyl alcohol without significant deterioration as a raw material for the further processing. High quality of VPH could be obtained by hydrolysis with 1% pepsin under its optimum condition $(pH\;1.65,\;37^{\circ}C)$. The solubilities of VPC and VPH were 40% and 90%, respectively, and the essential amino acid contents in two products were 48.7% and 63.2%, respectively. Especially, the content of taurine, a physiologically important amino acid, was 9.4% in VPH. In experimental preparations of imitation sauce and bread, panel test showed that the supplementation of 10% of VPH in imitation sauce and $3{\sim}5%$ of VPH in bread was well accepted in sensory characteristics such as color, flavor, taste and texture.

  • PDF

Bioethanol Production Using By-product of VPP (Value Prior to Pulping) (VPP (Value Prior to Pulping) 부산물을 이용한 바이오에탄올 생산)

  • Lee, Jae-Won;Kim, Hye-Yun;Jeffries, Thomas W.;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.561-567
    • /
    • 2010
  • In this study, we evaluated optimal conditions for ethanol production of the spruce hydrolysate (SH) obtained from diethyl oxalate pretreatment. Fermentable sugar concentration in SH was 29.04 g/${\ell}$ except arabinose. Monosaccharides obtained from the oligomer degradation were mainly mannose (39.26 g/${\ell}$) and galactose (12.83 g/${\ell}$). Concentration of 5-HMF and furfural which are inhibitors on ethanol fermentation were 0.09 g/${\ell}$ and 0.04 g/${\ell}$ respectively. Concentration of acetic acid and total phenolic compounds in SH were 1.4 g/${\ell}$ and 2.83 g/${\ell}$. Ethanol production using hydrolysate was 11.7 g/${\ell}$ at optimal pH 6.0 after 48 h. Specific ethanol production was 0.15 (g/(${\ell}^*h$)) at pH 5.0 and 5.5. while that was 0.24 (g/(${\ell}^*h$)) at pH 6.0. Specific ethanol production has difference depend on initial pH for fermentation. Ethanol production was 14.3 g/${\ell}$ after 48 h when xylanase 20 IU was added in SH for degradation of oligomer during fermentation. It implied that ethanol production increased by 22.2% compare with control (without xylanase).

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hrdrolysis and Improvement of Product Quality 3. Fish Sauce from Whole Sardine and Its Quality. (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 3. 정어리 전어체를 이용한 어장유의 속성제조 및 품질)

  • BAE Tae-Jin;HAN Bong-Ho;CHO Hyun-Duk;KIM Byeong-Sam;LEE Hyun-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.5
    • /
    • pp.361-372
    • /
    • 1990
  • Processing conditions of whole sardine into modified fish sauce were investigated. Thawed and chopped sardine was homogenized and hydrolyzed using commercial proteolytic enzymes such as complex enzyme-2000($2.18{\cdot}10^4U/g solid$) and alcalase($1.94{\cdot}10^4\;U/g solid$) in a cylindrical vessel with 4 baffles and 6-bladed impeller. Optimal pH, enzyme concentration and temperature for the hydrolysis with complex enzyme-2000 were 7.0, $7\%$ (W/W) and $52^{\circ}C$, and-those with alcalase were 8.0, $6\%$ (W/W) and $60^{\circ}C$. In both cases, the reasonable amount of water for homogenization, agitation speed and hydrolyzing time were $100\%$ (W/W), 100 rpm and 210 minutes. Thermal treatment of the filtered hydrolysate at $90^{\circ}C$ for 2 hours with $6\%$ of invert sugar was adequated to inactivation of the enzymes and pasteurization of the hydrolysate. Flavor, taste and color of the hydrolysate were improved during the heating process in which the browning products might participate. The content of free amino nitrogen in the fish sauce seasoned with $15\%$ of table salt was ca. $1,640 mg\%$. Yield of the fish sauce based on the contents of proteinous and free amino nitrogen in the raw whole sardine was ca. $86\%$, and ca. $96\%$ of these compounds of the fish sauce was in the form of free amino nitrogen. The pH, salinity and histamine content of the fish sauce were $6.1\~6.3,\;14.2\~14.3\%$ and less than $10\;mg\%$.

  • PDF

Characteristics of Alcohol Fermentation in Citrus Hydrolysate by Different Kinds of Sugar (첨가당의 종류에 따른 감귤 가수분해물의 알코올발효 특성)

  • Park, Chan-Woo;Woo, Seung-Mi;Jang, Se-Young;Choi, In-Wook;Lee, Sang-Il;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.773-778
    • /
    • 2011
  • This study investigated the alcohol fermentation characteristics of citrus hydrolysate by adding various sugars(sucrose, honey, fructose and fructooligosaccharide). As a result, the alcohol content was shown to be similar among all the sugars. Fructose, glucose, sucrose and maltose were detected as a major free sugar. In particular, the contents of fructose and glucose were shown to be higher in sucrose addition, lactic, citric and malic acids were detected as major organic acids of citrus wine. When the sensory characteristics of citrus wines were compared, flavor was shown to have a sensory score of 5.1 in sucrose addition, showing the most preference. However, no significant difference in preference was found among the sugars. Color, taste and overall acceptability were shown to have the most preference in sucrose addition, and then in honey, fructose, and fructooligosaccharide in order. Therefore, a further study on the improvement of quality and sensory preference using aging process and complex sugars is required.

Antibacterial activity of isothiocyanates from cruciferous vegetables against pathogenic bacteria in olive flounder (십자화과 채소 유래 isothiocyanates의 넙치 어병세균에 대한 항균활성)

  • Ko, Mi-Ok;Ko, Jeong-Yeon;Kim, Mi-Bo;Lim, Sang-Bin
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.886-892
    • /
    • 2015
  • The antimicrobial effects of ten isothiocyanates (ITCs) present in cruciferous vegetables and radish root hydrolysate were investigated against pathogenic bacteria from olive flounder. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured against two gram-positive bacterial strains (Streptococcus parauberis, S. iniae) and four gram-negative bacterial strains (Edwardsiella tarda, Vibrio ichthyoenteri, V. harveyi, Photobacterium damselae) by using a broth microdilution technique. The antibacterial activity of ITCs was in the order sulforaphane > sulforaphene > phenylethyl ITC > erucin > benzyl ITC > iberin > I3C > allyl ITC > phenyl ITC > hexyl ITC. The susceptibility of fish pathogens to ITCs was in the order of V. harveyi > E. tarda > P. damselae > S. parauberis > S. iniae > V. ichthyoenteri. Antimicrobial activity (MIC) of radish root hydrolysate was 0.250 mg/mL against S. iniae, 0.438 mg/mL against S. parauberis, and 0.500 mg/mL against both E. tarda and V. harveyi. The aliphatic ITCs were potent inhibitors of the growth of fish pathogens, followed by aromatic ITCs and indolyl ITC. The presence of a double bond in the chemical structure of ITCs decreased antibacterial activity, while ITCs with a thiol (-S-) group and a longer carbon chain increased antibacterial activity. These results suggest that ITCs have strong antibacterial activities and may be useful in the prevention of fish pathogens.