• Title/Summary/Keyword: hydrolysate

Search Result 722, Processing Time 0.048 seconds

ACE inhibitory activity of Peptide from krill(Euphausia superba) Hydrolysate

  • Kim, Dong-Soo;Kim, Young-Myoung;Park, Douck-Choun;Do, Jeong-Ryong
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.183-184
    • /
    • 2001
  • Angiotensin I converting enzyme (ACE) in renin-angiotensin system is a cause of essential hypertension, which covers most hypertension, one of the major adult diseases. Thus, the inhibition of ACE would be indispensable for the prevention and cure of hypertension. Therefore, a lot of studies on the ACE inhibitor have been conducted. Peptides from the protein hydrolysate have been reported as an remarkable inhibitor. Especially, various ACE inhibitory peptides were isolated and identified from marine products for their utilization as value added products. (omitted)

  • PDF

대두가수분해물로부터 새로운 항혈전성 펩타이드, SSGE와 DEE의 분리

  • Lee, Gyeong-Ae;Kim, Seung-Ho
    • Bulletin of Food Technology
    • /
    • v.17 no.3
    • /
    • pp.69-74
    • /
    • 2004
  • A soy protein hydrolysate was found to inhibit rat platelet aggregation induced by ADP, an aggregating agent. To find out its principal antiplatelet peptide(s), the soy protein hydrolysate was separated successively by gel filtration chromatography, revere-phase HPLC, and cation exchange HPLC. During the course of separation, we observed that most fractions had antiplatelet effects, which suggests that most peptides have some degree of antiplatelet effect. Following the inhibitory fractions, we purified and identified two new peptides, SSGE and DEE, by LC-electrospray ionization MS and peptide equencing. Both peptides were highly hydrophilic. The concentrations to obtain 50% inhibition ($IC_50$) of the aggregation intensity were approximately $\458muM$ and $\485muM$, respectively, for SSGE and DEE.

  • PDF

Flavor and Taste-Active Compounds in Blue Mussel Hydrolysate Produced by Protease

  • Cha, Yong-Jun;Kim, Hun;Jang, Sung-Min
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 1998
  • Volatile flavor compounds in hydrolyzed blue mussel(HBM) produced by OptimaseTM APL-440, with untreated blue mussel(UBM) were compared. A total of 100 volatile compounds were detected in both HBM and YBM , consisting mainly of 25 aldehydes, 16 ketones, 17 alcohols, 8 nitrogen-containing compounds, 11 aromatic compounds, 8 terpenes, and 15 miscellaneous compounds. Levels of aromiatic compounds decreased after hydrolysis, whereas levels of 7 nitrogen-containing compounds increased. The compounds , 3-methylbutanal, (z)-4-heptenal, and (E,Z)-2-, 6-nonadienal , had the highest odor values in both samples. Total free amino acids in HBM were 21.89%(w/w) and increased by 3,4 times higher than UBM. glutamic acid and aspartic acid, having sour tastes, were the major taste-active compounds in HBM.

  • PDF

The anti-inflammatory activity of Kalopanax pictus bark extract (IV). Antirheumatic activity of kalopanaxsaponin A methyl ester

  • Li, Da-Wei;Hyun, Jin-Ee;Jeong, Choon-Sik;Kim, Yeong-Shik;Lee, Eun-Bang
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.265.1-265.1
    • /
    • 2002
  • In the previous study. we isolated kalopanaxsaponin A and pictoside A from the EtOAc fraction of Kalopanax pictus extract. In the present study, the BuOH fraction of K pictus extract was hydrolyzed by alkali and antirheumatic effect of the fraction was evaluated. It was found that the hydrolysate of the BuOH fraction showed inhibition of adjuvant-induced arthritis in rats. Of the EtOAc and BuOH fractions of the hydrolysate, only the former exhibited anti-arthritic activity. (omitted)

  • PDF

Optimal Surface Aeration Rate for Bioethanol Production from the Hydrolysate of Seaweed Sargassum sagamianum Using Pichia stipitis (Pichia stipitis를 이용한 모자반 가수분해물로부터의 bioethanol 생산 시 최적 surface aeration rate)

  • Lee, Sang-Eun;Kim, Hye-Ji;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • We investigated the optimal surface aeration rate during bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. It was observed that, when the working volume was 880 mL in 2.5-L lab-fermentor, the surface aeration rates of 30 to 100 mL/min were the optimal values for bioethanol production, in which this surface aeration rate corresponded to less than 0.05 (1/min) as the oxygen transfer rate coefficient ($k_La$). In addition, during repeated-batch operation was carried out, we examined whether those surface aeration rates were the optimal for bioethanol production. It was also observed that the surface aeration rates of 30 to 100 mL/min in the working volume of 880 mL were the optimal values in terms of the cumulative bioethanol producrion and bioethanol yield. On the basis of the oxygen transfer rate coefficient it is probable that those surface aeration rates will be applied to the large-scale bioethanol production from the hydrolysate of seaweed Sargassum sagamianum.

Hydrolysate Preparation with High Content of 5-Hydroxytryptophan from Liquid Egg Protein and Its Sleep-Potentiating Activity

  • Kwon, Jung Il;Park, Yooheon;Han, Sung Hee;Suh, Hyung Joo
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.646-653
    • /
    • 2017
  • Alcalase hydrolysis of liquid egg white was used to produce 5-hydroxytryptophan (HTP) under various conditions and investigate the sleep-potentiating activity of liquid egg white hydrolysate (LEH) on pentobarbital-induced sleep. Alcalase hydrolysis yielded the highest content of 5-HTP ($13.50{\mu}g/mL$), while neutrase hydrolysis showed the lowest 5-HTP content ($5.23{\mu}g/mL$). The liquid egg white to water ratio (1:1) was optimal for the production of 5-HTP with high amino-nitrogen (A-N) content and degree of hydrolysis. The 5-HTP, amino-nitrogen, and degree of hydrolysis increased until 24 h of hydrolysis and slightly increased thereafter during hydrolysis with 2% and 5% enzyme addition. 5-HTP administration at doses of 6 and 9 mg/kg significantly increased sleep duration and decreased sleep latency time compared to that in the control (p<0.05). LEH (150 mg/mouse), which was equivalent to 5-HTP at 6 mg/kg, significantly decreased sleep latency time and increased sleep duration time compared to that in the control (p<0.05). Oral administration of LEH showed sleep-potentiating effects because of 5-HTP. The sleep-potentiating activity of LEH may have occurred through 5-HTP in our pentobarbital-induced sleep model. LEH may be a valuable alternative to sleep enhancement and may be used as a sleep-potentiating agent.

Production of Enzymatic Hydrolysate Including Water-soluble Fiber from Hemicellulose Fraction of Chinese Cabbage Waste (효소적 분해에 의한 배추부산물 hemicellulose 분획으로부터 수용성 식이섬유소 함유 가수분해물의 생산)

  • Park, Seo Yeon;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This study was performed to determine the optimal hydrolysis conditions for the production of hydrolysates, including water-soluble dietary fiber from Chinese cabbage, with commercial enzymes. The optimal pH and temperature for hydrolysis of the hemicellulose fraction were pH 5.0 and $40^{\circ}C$, and optimal enzyme concentrations were 45 units and 21 units for Shearzyme plus and Viscozyme L, respectively. The yields of the hydrolysate including the water-soluble dietary fiber from the hemicellulose fraction by Shearzyme plus and Viscozyme L were 22.64 and 24.73%, respectively, after a 72 h reaction. The molecular weight distribution of alcohol-insoluble fiber was characterized by gel chromatography; degradation of hemicellulose increased with increasing reaction time. Our results indicate that the hemicellulose fraction was degraded to water-soluble dietary fiber by enzymatic hydrolysis, and its hydrolysate could be utilized as new watersoluble food materials.