Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.4.311

Optimal Surface Aeration Rate for Bioethanol Production from the Hydrolysate of Seaweed Sargassum sagamianum Using Pichia stipitis  

Lee, Sang-Eun (Department of Biotechnology, Chungju National University)
Kim, Hye-Ji (Department of Biotechnology, Chungju National University)
Choi, Woon-Yong (Division of Biomaterials Engineering, Kangwon National University)
Kang, Do-Hyung (Korea Ocean Research & Development Institute)
Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University)
Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
Publication Information
KSBB Journal / v.26, no.4, 2011 , pp. 311-316 More about this Journal
Abstract
We investigated the optimal surface aeration rate during bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. It was observed that, when the working volume was 880 mL in 2.5-L lab-fermentor, the surface aeration rates of 30 to 100 mL/min were the optimal values for bioethanol production, in which this surface aeration rate corresponded to less than 0.05 (1/min) as the oxygen transfer rate coefficient ($k_La$). In addition, during repeated-batch operation was carried out, we examined whether those surface aeration rates were the optimal for bioethanol production. It was also observed that the surface aeration rates of 30 to 100 mL/min in the working volume of 880 mL were the optimal values in terms of the cumulative bioethanol producrion and bioethanol yield. On the basis of the oxygen transfer rate coefficient it is probable that those surface aeration rates will be applied to the large-scale bioethanol production from the hydrolysate of seaweed Sargassum sagamianum.
Keywords
Surface aeration; Sargassum sagamianum; bioethanol; repeated-batch; Pichia stipitis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Harun, R., M. K. Danquah, and G. M. Forde (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85: 199-203.
2 Horn, S. J., I. M. Aasen, and K. Ostgaard (2000) Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25: 249-254.   DOI   ScienceOn
3 Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee (2009) Production of bioethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20: 517-521.
4 Grootjen, D. R. J., R. G. J. M. van der Lans, and K. Ch. A. M. Luyben (1990) Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb. Technol. 12: 20-23.   DOI   ScienceOn
5 Watson, N. E., B. A. Prior, J. C. du Preez, and P. M. Lategan (1984) Oxygen requirements for D-xylose fermentation to ethanol and polyols by Pachysolen tannophilus. Enzyme Microb. Technol. 6: 447-450.   DOI   ScienceOn
6 Yeon, J.-H., H.-B. Seo, S.-H. Oh, W.-S. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25: 283-288.
7 Yeon, J.-H., S.-E. Lee, W. Y. Choi, W.-S. Choi, I.-C. Kim, H.-Y. Lee, and K.-H. Jung (2011) Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21: 109-114.   DOI
8 Yeon, J.-H., S.-E. Lee, W. Y. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung (2011) Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
9 Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993.   DOI   ScienceOn
10 Han, J. G., S.-H. Oh, M.-H. Jeong, S.-S. Kim, H.-B. Seo, K.-H. Jung, Y.-S. Jang, I.-C. Kim, and H.-Y. Lee (2009) Two-step high temperature pretreatment process for bioethanol production from rape stems. KSBB J. 24: 489-494.
11 Chaplin, M. F. and J. F. Kennedy (1986) Carbohydrate analysis; A practical approach, pp. 3. IRL Press, Oxford, UK.
12 Jeffries, T. W. (2006) Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326.   DOI   ScienceOn
13 Robyt, J. F. and R. Mukerjea (1994) Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202.   DOI
14 Seo, H.-B., S. S. Kim, H.-Y. Lee, and K.-H. Jung (2009) High-level production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol Bioprocess Eng. 14: 591-598.   DOI
15 Adams, J. M., J. A. Gallagher, and I. S. Donnison (2009) Fermentation study on Saccharina latissimafor bioethanol production considering variable pre-treatments. J. Appl. Phycol. 21: 569-574.   DOI   ScienceOn
16 Rizzi, M., P. Erleman, N. A. Bui-Thanh, and H. Dellweg (1988) Xylose fermentation by yeast. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl. Microbiol. Biotechnol. 29: 148-154.   DOI
17 Rizzi, M., K. Harwart, P. Erlemann, N.-A. Bui-Thanh, and H. Dellweg (1989) Purification and properties of the $NAD^+$-xylitol-dehydrogenase from the yeast Pichia stipitis. J. Ferment. Bioeng. 67: 20-24.   DOI
18 Ligthelm, M. E., B. A. Prior, and J. C. du Preez (1988) The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63-68.   DOI
19 Skoog, K. and B. Hahn-Hägerdal (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56: 3389-3394.