• Title/Summary/Keyword: hydrological parameters

Search Result 267, Processing Time 0.027 seconds

Fuzzy-based multiple decision method for landslide susceptibility and hazard assessment: A case study of Tabriz, Iran

  • Nanehkaran, Yaser A.;Mao, Yimin;Azarafza, Mohammad;Kockar, Mustafa K.;Zhu, Hong-Hu
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.407-418
    • /
    • 2021
  • Due to the complexity of the causes of the sliding mass instabilities, landslide susceptibility and hazard evaluation are difficult, but they can be more carefully considered and regionally evaluated by using new programming technologies to minimize the hazard. This study aims to evaluate the landslide hazard zonation in the Tabriz region, Iran. A fuzzy logic-based multi-criteria decision-making method was proposed for susceptibility analysis and preparing the hazard zonation maps implemented in MATLAB programming language and Geographic Information System (GIS) environment. In this study, five main factors have been identified as triggering including climate (i.e., precipitation, temperature), geomorphology (i.e., slope gradient, slope aspect, land cover), tectonic and seismic parameters (i.e., tectonic lineament congestion, distribution of earthquakes, the unsafe radius of main faults, seismicity), geological and hydrological conditions (i.e., drainage patterns, hydraulic gradient, groundwater table depth, weathered geo-materials), and human activities (i.e., distance to roads, distance to the municipal areas) in the study area. The results of analyses are presented as a landslide hazard map which is classified into 5 different sensitive categories (i.e., insignificant to very high potential). Then, landslide susceptibility maps were prepared for the Tabriz region, which is categorized in a high-sensitive area located in the northern parts of the area. Based on these maps, the Bozgoosh-Sahand mountainous belt, Misho-Miro Mountains and western highlands of Jolfa have been delineated as risk-able zones.

Effects of Overburden Stress on Stability in Unsaturated Weathered Soil Slopes (불포화 풍화계열 사면의 안정성에 미치는 상재응력의 영향)

  • Park, Seong-Wan;Park, Jai-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.55-65
    • /
    • 2009
  • It has been well known that the infiltration of rainfall causes major surfacial slope failures in Korea. However, the hydrological and mechanical behaviors in unsaturated slopes are somewhat complex. When an analysis on unsaturated slope problems is performed, soil-water characteristics curves (SWCC) are considered as major parameters to apply. Since the weathered soil slopes are layered and stressed by overburden pressures, the response of SWCCs should account for its overburden pressure. To deal with this situation, in this study, laboratory testings were conducted to evaluate the SWCC under various overburden stress. In addition, the unsaturated shear strength was estimated using SWCC. Then the performance of unsaturated weathered soil slopes was evaluated under various conditions after applying the effect of overburden pressure on SWCCs. The results demonstrated that the effect of overburden pressure on SWCC could be substantial and the proper application to analysis is very important to enhance the prediction of slope stability.

Ensemble data assimilation using WRF-Hydro and DART (WRF-Hydro와 DART를 이용한 분포형 수문모형의 자료동화)

  • Noh, Seong Jin;Choi, Hyeonjin;Kim, Bomi;Lee, Garim;Lee, Songhee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.392-392
    • /
    • 2021
  • 자료동화(data assimilation) 기법은 관측 자료와 예측 모형의 정보를 동시에 활용, 모형의 상태량(state variables)이나 매개변수(model parameters)를 실시간으로 업데이트하는 Bayesian 필터링 이론에 근거한 방법으로, 최근 이를 활용한 수문 모의 정확도 향상 기술이 빠르게 발전하고 있다. 본 연구에서는 앙상블 자료동화의 정확성을 향상시키기 위한 세부 방법인 along-the-stream localization과 inflation 기법의 분포형 수문 모형에 대한 적용성을 대규모 지역 단위(regional-scale) 모의를 통해 검토한다. 분포형 수문모형과 자료동화 framework로는 WRF-Hydro(Weather Research and Forecasting Model Hydrological Modeling System)와 DART(Data Assimilation Research Testbed)를 각각 적용한다. WRF-Hydro는 미국의 전 대륙지역(CONUS; continental United States)에 대한 수문 모델링 framework인 National Water Model의 핵심엔진이고, DART는 미국 National Center for Atmospheric Research(NCAR) 연구소에서 개발한 범용 자료동화 도구이다. 본 연구에서는 지표수 수문모형의 자료동화를 위해 개발된 기법인 along-the-stream localization과 inflation 기법이 하도 추적에 미치는 영향을 분석한다. along-the stream localization 기법은 공간적 근접도 외에 하도의 수문학적 연관관계를 고려하는 localization 기법으로, 상대적으로 수문학적 상관도가 떨어지는 하도에 대한 과도한 자료동화를 줄여줄 수 있다. inflation 기법은 앙상블의 다양성을 증가시키는 기법으로, 칼만 필터(Kalman filter)에 의한 업데이트의 이전이나 이후 적용하여 앙상블 예측의 정확도를 추가적으로 향상시킬 수 있다. 본 고에서는 앙상블 자료동화 기법을 지표수 수문 모의에 적용할 경우 남아 있는 난제와 적용 가능한 방법에 대해 중점적으로 논의한다.

  • PDF

Water balance change at a transiting subtropical forest in Jeju Island

  • Kim, JiHyun;Jo, Kyungwoo;Kim, Jeongbin;Hong, Jinkyu;Jo, Sungsoo;Chun, Jung Hwa;Park, Chanwoo;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.99-99
    • /
    • 2022
  • Jeju island has a humid subtropical climate and this climate zone is expected to migrate northward toward the main land, Korea Peninsula, as temperature increases are accelerated. Vegetation type has been inevitably shifted along with the climatic change, having more subtropical species native in southeast Asia or even in Africa. With the forest composition shift, it becomes more important than ever to analyze the water balance of the forest wihth the ongoing as well as upcoming climate change. Here, we implemented the Ecosystem Demography Biosphere Model (ED2) by initializing the key variables using forest inventory data (diameter at breast height in 2012). Out of 10,000 parameter sets randomly generated from prior distribution distributions of each parameter (i.e., Monte-Carlo Method), we selected four behavioral parameter sets using remote-sensing data (LAI-MOD15A2H, GPP-MOD17A2H, and ET-MOD16A2, 8-days at 500-m during 2001-2005), and evaluated the performances using eddy-covariance carbon flux data (2012 Mar.-Sep. 30-min) and remote sensing data between 2006-2020. We simulated each of the four RCP scenarios (2.6, 4.5, 6.0, and 8.5) from four climate forcings (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5 from ISIMIP2b). Based on those 64 simulation sets, we estimate the changes in water balance resulting from the forest composition shift, and also uncertainty in the estimates and the sensitivity of the estimates to the parameters, climate forcings, and RCP scenarios.

  • PDF

Backward estimation of precipitation from high spatial resolution SAR Sentinel-1 soil moisture: a case study for central South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.329-329
    • /
    • 2022
  • Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.

  • PDF

Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model (GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석)

  • Kim, Jisu;Kim, Minseok;Kim, Jin Kwan;Oh, Hyun-Joo;Woo, Choongshik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.

A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge (시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용)

  • Yoo, Hyungju;Lee, Seung Oh;Choi, Seohye;Park, Moonhyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, the flood damage on riverside social infrastructures was extended so that there has been a threat of overflow. Therefore, a rapid prediction of potential flooding in riverside social infrastructure is necessary for administrators. However, most current flood forecasting models including hydraulic model have limitations which are the high accuracy of numerical results but longer simulation time. To alleviate such limitation, data driven models using artificial neural network have been widely used. However, there is a limitation that the existing models can not consider the time-series parameters. In this study the water surface elevation of the Hangang River bridge was predicted using the NARX model considering the time-series parameter. And the results of the ANN and RNN models are compared with the NARX model to determine the suitability of NARX model. Using the 10-year hydrological data from 2009 to 2018, 70% of the hydrological data were used for learning and 15% was used for testing and evaluation respectively. As a result of predicting the water surface elevation after 3 hours from the Hangang River bridge in 2018, the ANN, RNN and NARX models for RMSE were 0.20 m, 0.11 m, and 0.09 m, respectively, and 0.12 m, 0.06 m, and 0.05 m for MAE, and 1.56 m, 0.55 m and 0.10 m for peak errors respectively. By analyzing the error of the prediction results considering the time-series parameters, the NARX model is most suitable for predicting water surface elevation. This is because the NARX model can learn the trend of the time series data and also can derive the accurate prediction value even in the high water surface elevation prediction by using the hyperbolic tangent and Rectified Linear Unit function as an activation function. However, the NARX model has a limit to generate a vanishing gradient as the sequence length becomes longer. In the future, the accuracy of the water surface elevation prediction will be examined by using the LSTM model.

Analysis of the Applicability of Parameter Estimation Methods for a Stochastic Rainfall Model (추계학적 강우모형 매개변수 추정기법의 적합성 분석)

  • Cho, HyunGon;Kim, GwangSeob;Yi, JaeEung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1105-1116
    • /
    • 2014
  • A stochastic rainfall model, NSRPM (Neyman-Scott Rectangular Pulse Model), is able to reflect the cluster characteristics of rainfall events which is unable in the RPM (Rectangular Pulse Model). Therefore NSRPM has advantage in the hydrological applications. The NSRPM consists of five model parameters and the parameters are estimated using optimization techniques such as DFP (Davidon-Fletcher-Powell) method and genetic algorithm. However the DFP method is very sensitive in initial values and is easily converge to local minimum. Also genetic algorithm has disadvantage of long computation time. Nelder-Mead method has several advantages of short computation time and no need of a proper initial value. In this study, the applicability of parameter estimation methods was evaluated using rainfall data of 59 national rainfall networks from 1973-2011. Overall results demonstrated that accuracy in parameter estimation is in the order of Nelder-Mead method, genetic algorithm, and DFP method.

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds (수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용)

  • Lee, Bo-Ra;Kang, Sin-Kyu;Kim, Eun-Sook;Hwang, Tae-Hee;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.247-259
    • /
    • 2007
  • In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.

Development of Land Surface Model for Soyang river basin (소양강댐 유역에 대한 지표수문모형의 구축)

  • Lee, Jaehyeon;Cho, Huidae;Choi, Minha;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.837-847
    • /
    • 2017
  • Land Surface Model (LSM) was developed for the Soyang river basin located in Korean Peninsula to clarify the spatio-temporal variability of hydrological weather parameters. Variable Infiltration Capacity (VIC) model was used as a LSM. The spatial resolution of the model was 10 km and the time resolution was 1 day. Based on the daily flow data from 2007 to 2010, the 7 parameters of the model were calibrated using the Isolated Particle Swarm Optimization algorithm and the model was verified using the daily flow data from 2011 to 2014. The model showed a Nash-Sutcliffe Coefficient of 0.90 and a correlation coefficient of 0.95 for both calibration and validation periods. The hydrometeorological variables estimated for the Soyang river basin reflected well the seasonal characteristics of summer rainfall concentration, the change of short and shortwave radiation due to temperature change, the change of surface temperature, the evaporation and vegetation increase in the cover layer, and the corresponding change in total evapotranspiration. The model soil moisture data was compared with in-situ soil moisture data. The slope of the trend line relating the two data was 1.087 and correlation coefficient was 0.723 for the Spring, Summer and Fall season. The result of this study suggests that the LSM can be used as a powerful tool in developing precise and efficient water resources plans by providing accurate understanding on the spatio-temporal variation of hydrometeorological variables.