• Title/Summary/Keyword: hydrological application

Search Result 239, Processing Time 0.023 seconds

A new classification rule of hydrological soil groups of Jeju Island: Application to representative basins and evaluation of previous studies (제주도의 새로운 수문학적 토양군 분류 방법: 대표 유역에 대한 적용 및 기존연구 평가)

  • Kang, Minseok;Lee, Youngju;Park, Changyeol;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1261-1271
    • /
    • 2018
  • This study evaluates the applicability of the classification rule of hydrological soil group proposed by Lee et al. (2018) with its application to three river basins (Jungmuncheon, Cheonmicheon, and Hancheon) in Jeju Island. The CN values are estimated as results of this application to these three basins, which is then compared with those estimated by applying the conventional three methods. Additionally, previous studies related with the classification of soil groups of Jesu Island, such as the infiltration and rainfall-runoff analysis, are reviewed to evaluate how the resulting hydrological soil groups vary depending on the adopted classification method.. Summarizing the results is as follows. (1) Comparison result of the hydrological soil groups of Jeju Island with respect to the classification method shows that the soil group B is dominant in the application of Lee et al. (2018). However, it is hydrological soil groups C and D in the application of Hu and Jung (1987), hydrological soil groups A and C in the application of Jung et al. (1995), and hydrological soil group D in the application of RDA (2007). (2) In all the applications of Lee et al. (2018) to three selected river basins in Jeju Island, the CN valuse are found to be smaller than those by other conventional three methods.. Lastly, (3) The evaluation results of previous studies related with the classification of hydrological soil groups analysis in Jeju Island shows that the CN value in the Jeju Island may be smaller than those estimated by conventional three methods, also the initial loss higher than 0.2S.

A Study of Computer Models Used in Environmental Impact Assessment II : Hydrologic and Hydraulic Models (환경영향평가에 사용되는 컴퓨터 모델에 관한 연구 II : 수리수문 모델)

  • Park, Seok-Soon;Na, Eun-Hye
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This paper presents a study of hydrological and hydraulic model applications in environmental impact statements which were submitted during recent years in Korea. In many cases (almost 70 %), the hydrological and hydraulic changes were neglected from the impact identification processes, even if the proposed actions would cause significant impacts on those environmental items. In most cases where the hydrological and hydraulic impacts were predicted, simple equations were used as an impact prediction tool. Computer models were used in very few cases(5%). Even in these few cases, models were improperly applied and thus the predicted impacts would not be reliable. The improper applications and the impact neglections are attributed to the fact that there are no available model application guidelines as well as no requirements by the review agency. The effects of mitigation measures were not analyzed in most cases. Again, these can be attributed to no formal guidelines available for impact predictions until now. A brief guideline is presented in this paper. This study suggested that the model application should be required and guided in detail by the review agency. It is also suggested that the hydrological and hydraulic items shoud be integrated with the water quality predictions in future, since the non-point source pollution runoff is based on the hydrologic phenomena and the water quality reactions on the hydraulic nature.

  • PDF

Application of Proxy-basin Differential Split-Sampling and Blind-Validation Tests for Evaluating Hydrological Impact of Climate Change Using SWAT (SWAT을 이용한 기후변화의 수문학적 영향평가를 위한 Proxy-basin Differential Split-Sampling 및 Blind-Validation 테스트 적용)

  • Son, Kyong-Ho;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.969-982
    • /
    • 2008
  • As hydrological models have been progressively developed, they are recognized as appropriate tools to manage water resources. Especially, the need to evaluate the effects of landuse and climate change on hydrological phenomena has been increased, which requires powerful validation methods for the hydrological models to be employed. As measured streamflow data at many locations may not be available, or include significant errors in application of hydrological models, streamflow data simulated by models only might be used to conduct hydrological analysis. In many cases, reducing errors in model simulations requires a powerful model validation method. In this research, we demonstrated a validation methodology of SWAT model using observed flow in two basins with different physical characteristics. First, we selected two basins, Gap-cheon basin and Yongdam basin located in the Guem River Basin, showing different hydrological characteristics. Next, the methodology developed to estimate parameter values for the Gap-cheon basin was applied for estimating those for the Yongdam basin without calibration a priori, and sought for validation of the SWAT. Application result with SWAT for Yongdam basin showed $R_{eff}$ ranging from 0.49 to 0.85, and $R^{2}$ from 0.49 to 0.84. As well, comparison of predicted flow and measured flow in each subbasin showed reasonable agreement. Furthermore, the model reproduced the whole trends of measured total flow and low flow, though peak flows were rather underestimated. The results of this study suggest that SWAT can be applied for predicting effects of future climate and landuse changes on flow variability in river basins. However, additional studies are recommended to further verify the validity of the mixed method in other river basins.

Application to Evaluation of Hydrologic Time Series Forecasting for Long-Term Runoff Simulation (장기유출모의를 위한 수문시계열 예측모형의 적용성 평가)

  • Yoon, Sun-Kwon;Ahn, Jae-Hyun;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.809-824
    • /
    • 2009
  • Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.

THE CHEONGGYE-CHEON ESTORATION PROJECT AND HYDROLOGICAL CYCLE ANALYSIS

  • Kim, Hyeon-Jun;Yoon, Soo-Kil;Noh, Seong-Jin;Jang, Cheol-Hee
    • Water Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.179-187
    • /
    • 2005
  • This paper introduces the Cheonggye-cheon restoration project. The restoration project aims to revive the 600-year-old city of Seoul by recovering the historical heritage, guaranteeing safety from the deteriorated covering structures, creating the environment-friendly space, and revitalizing the neglected city centers. In order to understand the current hydrological cycle of the Chenggye-cheon watershed, the annual water balance of the region was calculated using the observed data including precipitation, runoff, water supply and sewage, and the changes in the groundwater level. The $2001{\sim}2002$ data were used to calibrate the WEP, and the $2003{\sim}2004$ data were used to verify the WEP. The calibration and validation results for the flood hydrograph how a reasonable value (at Majanggyo station, the R2 for the calibration period was 0.9, and that for the validation period was 0.7). According to the annual water balance of the Cheonggye-cheon watershed for 2004, the amount of surface runoff, infiltration, and evapotranspiration was 1,097mm, 216mm and 382mm, respectively, for an annual precipitation of 1,499mm. The application results from WEP, a distributed hydrological model, provide more detailed information of the watershed, and the model will be useful for improving the hydrological cycle in urban watershed.

  • PDF

Development of the evaluation method for hydrological cycle soundness: application to Gyeongan stream watershed (수문 순환 건전성 평가 기법 개발 : 경안천 유역 적용)

  • Kim, Geon;Lee, Jae-Beom;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.891-901
    • /
    • 2021
  • In this study, a hydrological cycle soundness evaluation method was developed using monthly meteorological observation data. The Gyeongan stream watershed was divided into five sub-basins and eight criteria were established for hydrological cycle evaluation: the number of non-rainfall day, the number of non-rainfall day fluctuation, over 30 mm per day, over 30 mm per day fluctuation, average river level, average river level fluctuation, average groundwater level and average groundwater level fluctuation. Observation data were normalized and weights for evaluation by each sub-basin were calculated using the entropy method. The hydrological cycle soundness evaluation indices were calculated using TOPSIS applying the calculated weight value. As a result of the study, it was found that the hydrological cycle soundness was unstable in the Gyeongan-upstream from November to January, the Gyeongan-suwipyo from February to April, Gonjiam stream from April to May, and the Gyeongan-downstream from November to February. In this study, the developed technique is expected to serve as a quantitative basis for policy decision to recover hydrological cycle soundness.

Implementation of ICT-based Real-time Hydrological Data Acquisition and Processing System for Scientific Water Management (과학적 물관리를 위한 ICT기반 실시간 수문정보시스템 구현)

  • Jang, Sung-Won;Jeong, Chang-wook;Jo, Kyoung-Hoon;Shin, Ji-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.303-305
    • /
    • 2022
  • In Korea, due to the geographical and hydrological characteristics of the country, the water cycle has a large variation throughout the year. Therefore, in order to quickly identify and prepare for hydrological phenomena such as floods and droughts, the need for scientific water management incorporating the latest ICT technologies is growing. Accordingly, K-water operates a real-time Hydrological Data Acquisition and Processing System (HDAPS) that can check the situation of the site more intuitionally by linking the hydrological data collected in real time through satellite, GIS, and CCTV. and prepared for flood and drought. In this paper, we will introduce K-water's real-time hydrological information system and consider its application to protect people's lives and property.

  • PDF

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF