• 제목/요약/키워드: hydrologic extreme variable

검색결과 5건 처리시간 0.023초

계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석 (Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend)

  • 이정주;권현한;문영일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF

극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석 (Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis)

  • 이정주;권현한;김태웅
    • 대한토목학회논문집
    • /
    • 제30권4B호
    • /
    • pp.389-397
    • /
    • 2010
  • 본 논문에서는 극치수문자료의 경향성 분석 개념을 소개하고 이를 빈도해석과 연계시켜 해석하는 방법론을 제시하고자 Gumbel 극치분포를 기반으로, 시간변화에 의한 수문빈도 특성 변화를 모의할 수 있는 Bayesian 모형을 구성하였다. 사후분포의 매개변수는 깁스표본법에 의한 Markov Chain Monte Carlo Simulation을 통해 추정하였으며, 이를 통해 경향성을 고려한 확률강우량과 불확실성 구간을 추정하였다. 또한 경향성을 고려한 확률강우량이 현재 알려진 확률강우량을 초과할 확률을 통해 동적 위험도 해석과정을 소개하였으며, 현재의 경향성에 대해서 시간에 따라 연속으로 추정된 확률밀도함수를 비교하여 수문학적 위험도가 증가할 수 있음을 모의결과를 통해 확인하였다. 이와 더불어 단순히 경향성의 존재여부를 확인하는데 그치지 않고 사후분포를 통해서 통계적 추론을 수행함으로써 경향성에 대한 통계학적인 유의성을 정량적으로 평가할 수 있었다.

극치수문자료의 계절성 분석 개념 및 비정상성 빈도해석을 이용한 확률강수량 해석 (Concept of Seasonality Analysis of Hydrologic Extreme Variables and Design Rainfall Estimation Using Nonstationary Frequency Analysis)

  • 이정주;권현한;황규남
    • 한국수자원학회논문집
    • /
    • 제43권8호
    • /
    • pp.733-745
    • /
    • 2010
  • 수문자료의 계절성은 수자원관리의 관점에서 매우 중요한 요소로서 계절성의 변동은 댐의 운영, 홍수조절, 관개용수 관리 등 다양한 분야와 밀접한 관계를 가지고 있다. 수문빈도해석을 위해 POT 자료와 같은 부분기간치계열을 사용함으로써 자료의 확충, 계절성 확보, 발생빈도모형의 구축 등이 가능하다. 본 연구에서는 POT 자료의 장점을 효과적으로 빈도해석에 연계시키는 방법론으로서 POT 자료로부터 계절성을 추출하고 이를 빈도해석과 연계시켜 Bayesian 기법을 기반으로 하는 비정상성 빈도해석 모형을 구축하였다. 서울지점의 관측 자료로부터 98% Threshold를 적용하여 POT 자료를 추출하였으며, GEV 분포에 대한적합성을 검토하였다. 위치 및 규모매개변수의 계절적변동성을 Fourier 급수로 표현하고, Bayesian Markov Chain Monte Carlo 모의를 통해 매개변수들의 사후분포를 추정하였으며, 사후분포와 Quantile 함수를 이용하여 재현기간에 따른 확률강수량을 추정하였다. 계절성을 고려한 비정상성빈도해석 결과 7~8월의 비정상성 확률강수량과 기존 정상성빈도해석의 결과가 유사한 값을 나타내고 있으며 동시에 계절성을 반영한 확률강수량의 거동을 효과적으로 모의가 가능하였다.

기후변동을 고려한 조건부 GEV 분포를 이용한 비정상성 빈도분석 (Non-stationary Frequency Analysis with Climate Variability using Conditional Generalized Extreme Value Distribution)

  • 김병식;이정기;김형수;이진원
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.499-514
    • /
    • 2011
  • 전통적 수문빈도분석의 기본가정은 기후와 수문사상이 정상성이라는 것으로 즉, 분포형의 매개변수들이 시간에 따라 불변이라는 것이다. 댐, 제방, 운하, 교량 등 수공 관련 기간시설물을 계획하고 설계할 때는 과거 상황을 이해하고 미래에도 그 상황이 유지될 것이라는 것을 근거로 한다. 그러나 현실은 기본가정과는 달리 수문자료들은 비정상성을 지니고 있으며 수자원관리자들에 의해 항상 기간시설물을 계획하고 설계 할 때 비정상성을 다루고자 끊임없이 노력해 왔다. 본 논문에서는 비정상성 수문빈도분석기법을 소개하고, 조건부 Generalized Extreme Value(GEV) 분포를 이용하여 비정상성 빈도분석을 실시하였다. 본 논문에서는 6개 기상관측소지점의 24시간 연최고치 강우량을 대상으로 비정상성 빈도분석을 실시하였으며 최우도법(Maximum Likelihood)을 사용하여 GEV 분포형의 매개변수를 추정하였다. 그 결과 비정상성 GEV 분포가 확률 강우량을 산정하는데 있어 적합함을 확인 할 수 있었다. 또한 ENSO(El Nino Southern Oscillation)를 나타내는 지수인 SOI(Southern Oscillation Index)를 이용하여 기후변동 고려한 비정상성 빈도분석을 실시하였다.

Quantile 회귀분석을 이용한 극대강수량 자료의 경향성 분석 (Trend Analysis of Extreme Precipitation Using Quantile Regression)

  • 소병진;권현한;안정희
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.815-826
    • /
    • 2012
  • 기존 Ordinary Regression (OR) 방법을 이용한 경향성 분석은 경향성을 과소평가하는 문제점을 나타낸다. 이러한 점에서 본 연구에서는 자료의 정규분포 가정과 평균을 중심으로 경향성 평가가 이루어지는 기존 Ordinary Regression (OR) 방법을 개선한 Quantile Regression (QR) 방법을 제안하였다. 본 연구에서는 64개 강우 관측지점의 연 최대 극대강수량 자료에 대하여 QR 방법과 OR 방법에 대하여 통계적 성능을 평가하였다. QR 방법의경향성 분석결과 47개 지점에서 5% 오차수준 내에서 t-검정을 통과한 반면 OR 방법에서는 13개 지점 만이 통계적 유의성을 가지는 것으로 나타났다. 이는 OR 방법이 자료의 평균을 중심으로 경향성을 평가하는 기법인데 반해 QR은 자료의 다양한 분위에서 경향성을 평가함으로써 극대 및 극소 부분에서의 경향성을 보다 유연하게 감지하는 이유로 판단된다. QR 방법을 통한 경향성 평가는 평균 중심의 해석문제점을 개선할 수 있으며 자료가 정규분포를 따르지 않거나 왜곡된 분포형태를 갖는 자료의 수문학적 경향성 평가에 유용하게 사용될 수 있을 것으로 판단된다.