Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure that gives them the safety advantage over the gas and liquid storage methods. However, it has disadvantages of slow hydrogen adsorption-desorption time and low thermal conductivity. To improve characteristics of metal hydrides, it is important that activation and thermal conductivity of metal hydrides are improved. In this study, we have been investigated hydrogen storage properties of Hydralloy C among Ti-Mn alloys. Also, the characteristics of activation and thermal conductivity of Hydralloy C were enhanced to improve kinetics of hydrogen adsorption-desorption. As physical activation method, PHEM (planetary high energy mill) was performed in Ar or $H_2$ atmosphere. Hydralloy C was also activated by $TiCl_3$ catalyst. To improve thermal conductivity, various types of ENG (expanded natural graphite) were used. The prepared samples were compacted at pressure of 500 bar. As a result, the activation properties of $H_2$ PHEM treated Hydralloy C was better than the other activation methods. Also, the amounts of hydrogen storage showed up to 1.6 wt%. When flake type ENG was added to Hydralloy C, thermal conductivity and hydrogen storage properties were improved.
The hydorgen storage alloys were produced by melting in arc melting furnace and then solution heat treated at $1,100^{\circ}C$ followed by pulverization. The chemical analysis on the samples showed that the major elements of misch metal(Mm) were La, Ce, Pr and Nd with impurity less than 1wt.%. X-ray diffraction indicated that the structure for these samples were a single phase of hexagonal with $CaCu_5$ type. Compared to the initial particle size $100{\sim}110{\mu}m$, the many fine cracks were found and particle size decreased to $14{\mu}m$ for $MmNi_{4.5}Mn_{0.5}$ after hydriding/dehydring test run. To activate the sample the vessel filled with hydrogen storage alloys was first evacuated for for at $70^{\circ}C$ and then treated for 10.5hr under hydrogen pressure of 20atm for $MmNi_{4.5}Mn_{0.5}$ alloy. The experimental data showed that the hydrogen storage alloy of $MmNi_{4.5}Mn_{0.5}$ had superior adsorption and description properties within a temperature rang of $40^{\circ}C{\sim}80^{\circ}C$ and also they had a good P-C-T curve.
Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.
In order to improve the activation properties of the $AB_2$ type hydrogen storage alloys for Ni-MH battery, the alloy surface was modified by employing high energy ball milling. The $Zr_{0.54}Ti_{0.45}V_{0.54}Ni_{0.87}Cr_{0.15}Co_{0.21}Mn_{0.24}$ alloy powder was ball milled for various period by using the high energy ball mill. As the ball milling time increased, activation of the $AB_2$ type composite powder electrodes were enhanced regardless of additives. When the ball milling time was small discharge capacities of the $AB_2$ type composite powder electrodes increased with the milling time. On the other hand for large milling time it decreased with increasing milling time. The maximum discharge capacity was obtained by ball milling for 3-4 min.
We investigated the effects of the addition of Mn and $AB_5$ type alloy on the electrochemical characteristics of Ti-Cr-V BCC type alloys as anode materials for Ni-MH battery. The activation behavior and discharge capacity of the BCC type alloys were significantly improved by ball-milling with the $LmNi_{4.1}Al_{0.25}Mn_{0.3}Co_{0.65}$ alloy, because the $AB_5$ type alloy acted as hydrogen path on the surface of the BCC type alloy. Among the Mn substituted alloys($Mn=0.03%{\sim}0.08%$), the $Ti_{0.32}Cr_{0.38}Mn_{0.05}V_{0.25}$ alloy ball-milled with $AB_5$ type alloy exhibited the greatest discharge capacity of $336\;mAh{\cdot}g^{-1}$. In addition, Mn substituted alloys exhibited the lower plateau pressure in P-C- T curve, the better hydrogen storage capacity and faster surface activation compared with the alloy without Mn.
For the purpose of developing the non-stoichiometric Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out in KAIST. After careful alloy design of $ZrMn_2-based$ hydrogen storage alloys through varing their stoichiometry while susbstituting or adding some alloying elements, the $Zr-Ti-(Lh-V-Ni)_{2.2},\;Zr-Ti-(Mn-V-Cr-Ni)_{1.8\pm0.1}$ with high capacity and better performance was developed. Consequently the $Zr-Ti-(Mn-V-Ni)_{2.2}$ alloy has a high discharge capacity of 394mAh/g and shows a high rate capability equaling to that of commercialized $AB_5$ type alloys. On the other hand, in order to develop the hydrogen storage alloy with higher discharge capacity, the hypo-stoichiometric $Zr(Mn-V-Ni)_{2-\alpha}$ alloys substituted by Ti are under developing. As the result of competitive roles of Ti and $stocihiometry({\alpha})$, the discharge capacity of $Zr-Ti-(Mn-V-Cr-Ni)_{l.8\pm0.1}$ alloys is about 400mAh/g(410 mAh/g, which shows the highest level of performance in the Zr-based alloy developed. Our sequential endeavor is improving the shortcoming of Zr-based Laves phase alloy for commercialization, i.e., poor activation property and low rate capability, etc. It is therefore believed that the commercialization of Zr-based Laves phase hydrogen storage alloy for Ni-MH rechargeable battery is in near future.
Metal hydride used as hydrogen storage material usually needs the activating process to store the hydrogen at high temperature or high pressure. In general as the particle size of metal hydride becomes smaller, approached to the micro, furthermore, nano scale, storage ability and reaction kinetics are reported to be increased, because the specific surface is extremely increased. But the experimental results demonstrated that the optimum particle size is existed for the best absorbing performance, opposite to the usual expectation. This results from the particles to be come amorphous with their approaching to micro and nano scale, in the storage site within the metal hydride lattice is decreased, which is proved by XRD and SEM.
T hydrogen absorption-desorption behavior induced by thermal or hydrogen pressure cycling in a closed system was observed in hydrogen storage alloys, $(La-R-Mm)Ni_{4.5}Fe_{0.5}$, $MmNi_4Fe_{0.85}Cu_{0.15}$ and $(Ce-F-Mm)Ni_{4.7}Al_{0.2}Fe_{0.1}$. Thereby (La-R-Mm), Mm and (Ce-F-Mm) refer to La-rich mischmetal, mischmetal and Ce-free mischmetal respectively. As the results, it is found that the alloy stabilities during thermal cycling varies with alloy composition change. The highest stability occurs in $MmNi_4Fe_{0.85}Cu_{0.15}$ and the lowest stability in $(La-R-Mm)Ni_{4.5}Fe_{0.5}$. Comparing hydrogen pressure cycling with thermal cycling, pressure cycling causes severer degradation of the alloy $(Ce-F-Mm)Ni_{4.7}Al_{0.2}Fe_{0.1}$ than thermal cycling. When the 1500 times-cycled alloy is annealed at $400^{\circ}C$ for 3hrs under 1 atm of hydrogen pressure the hydrogen storage capacity is recovered only partially but not completely to the initial capacity. The amount of capacity loss after annealing is larger in the hydrogen pressure cycled samples than in the thermal cycled, suggesting an incoming of impure gas during hydrogen pressure cycling.
Intensive studies on the electrochemical characteristics of TiFe type alloy electrodes have been carried out to clarify the mechanism of electrochemical hydrogen absorption and desorption. It was found that electrochemical activation of the TiFe type alloys is difficult and that charge efficiencies are very low even after a decade of activation cycles. However, by the pretreatment of the powders such as gas activation and/or Ni chemical plating, charge efficiencies fairly increased, especially for the $TiFe_{0.8}Ni_{0.2}$ alloy. It was considered that difficulties to activation and lower charge efficies of the alloys are due to the presence of the passivation films, which prohibit inward diffusion of hydrogen and promote the combination of adsorbed hydrogen atom to gas bubbles during the electrochemical charge. In addition, lower diffusivity of hydrogen in the alloys may be played an important role lowering the charge efficiencies.
The electronic structure and bonding in $Ti_2Pd$ and $Pd_2Ti$ alloys with and without hydrogen as an interstitial atom were studied by performing extended Huckel tight-binding band calculations. The hydrogen absorption near an octahedral site is found to be a favorable process in $Ti_2Pd$ rather than in $Pd_2Ti$. In metal hydrides, the metal-hydrogen bonding contribution is crucial to the stability of the system. The stronger interaction of hydrogen with Ti atoms in $Ti_2PdH_2$ than with Pd atoms in $Pd_2TiH_2$ is analyzed by perturbation theory.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.