• Title/Summary/Keyword: hydrogen separation

Search Result 363, Processing Time 0.028 seconds

Pd-based metallic membranes for hydrogen separation and production

  • Tosti, Silvano;Basile, Angelo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.25-28
    • /
    • 2003
  • Low cost composite metallic membranes for the hydrogen separation and production have been prepared by using thin Pd-Ag foils reinforced by metallic (stainless steel and nickel) structures. Especially, “supported membranes” have been obtained by a diffusion welding procedure in which Pd-Ag thin foils have been joined with perforated metals (nickel) and expanded metals (stainless steel): in these membranes the thin palladium foil assures both the high hydrogen permeability and the perm-selectivity while the metallic support provides the mechanical strength. A second studied method of producing "laminated membranes" consists of coating non-noble metal sheets with very thin palladium layers by diffusion welding and cold-rolling. Palladium thin coatings over these metals reduce the activation energy of the hydrogen adsorption process and make them permeable to the hydrogen. In this case, the dense non-noble metal has been used as a support structure of the thin Pd-Ag layers coated over its surfaces: a proper thickness of the metal assures the mechanical strength, the absence of defects (cracks, micro-holes) and the complete hydrogen selectivity of the membrane. membrane.

  • PDF

Effects of Nickel Supports on Hydrogen Permeability of Vanadium based Membrane (니켈 지지체를 이용한 바나듐기 분리막의 수소 투과특성)

  • Cho, Kyoungwon;Choi, Jaeha;Jung, Seok;Kim, Raymundk.I.;Hong, Taewhan;Ahn, Joongwoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.200-205
    • /
    • 2013
  • The separation of hydrogen depends on porosity, diffusivity and solubility in permeation membrane. Dense membrane is always showing a solution diffusion mechanism but porous membrane is not showing. Therefore, porous membrane has a good hydrogen flux due to pore is carried out transferred media. This mechanism is named as the Knudsen diffusion. Hydrogen molecules or hydrogen atoms are diffused along pore that is a mean free path. In this study, complex layer hydrogen permeation membrane was fabricated by hot press process. And then, it was evaluated and calculated to relationship between hydrogen permeability and membrane porosity.

Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition (표면 니켈 조성에 따른 팔라듐-니켈-은 합금 수소분리막의 수소투과선택 특성)

  • Lim, Da-Sol;Kim, Se-Hong;Kim, Do-Hui;Cho, Seo-Hyun;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.277-290
    • /
    • 2018
  • In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.

Experiment and Simulation of PSA Process for $H_2/Ar$ Mixtures gas ($H_2/Ar$ 혼합기체의 PSA 공정 실험과 모사)

  • Kang, Seok-Hyun;Jeong, Byung-Man;Choi, Hyun-Woo;Kim, Sung-Hyun;Lee, Byung-Kwon;Choi, Dae-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.180-190
    • /
    • 2005
  • The PSA cycle was performed for the separation of binary gas mixture $H_2/Ar$ (80%/20%) using the six-step two-bed process. Adsorption equilibrium contains a LRC model for equilibrium adsorption isotherms and a LDF model for mass transfer. Aspen ADSIM, simulator was applied to predict the separation performance. The effect of cycle parameters such as feed rate, adsorption pressure and P/F ratio on the separation of hydrogen has been studied in experiment and simulation. In the results, maximize the recovery of hydrogen as a high purity was 13LPM feed flowrate, 120sec adsorption time, 11atm adsorption pressure and 0.1 P/F ratio in a cyclic steady-state come out since 10th cycle.

Fabrications and Evaluations of Hydrogen Permeation on TIN-M(Co, NI) Composite Membrane (TIN-M(M=Co, NI) 복합 분리막의 제조 및 수소투과 특성평가)

  • Kim, Kyeong-Il;Yoo, Sung-Woong;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.264-270
    • /
    • 2010
  • Recently, the most promising methods for high purity hydrogen production are membranes separation such as polymer, metal, ceramic and composites. It is well known that Pd and Pd-alloys membranes have excellent properties for hydrogen separation. However, it has hydrogen embrittlement and high cost for practical applications. Therefore, most scientists have studied new materials instead of Pd and Pd-alloys. On the other hand, TiN powders are great in resistance to acids and chemically stable under high operating temperature. In order to get specimens for hydrogen permeation, the TiN powders synthesized were consolidated together with Co, Ni powders by hot press sintering (HPS). During the consolidation of powders at HPS, heating rate was 10 K/min and the pressure was 10 MPa. It was characterized by XRD, SEM. Also, we estimated the hydrogen permeability by Sievert's type hydrogen permeation membrane equipment.

$Ba(Zr_{0.85}Y_{0.15})O_{3-\delta}$-NI Composite Membrane for Hydrogen Separation by Aerosol Deposition Method (에어로졸 증착법(Aerosol Depostion method)에 의한 $Ba(Zr_{0.85}Y_{0.15})O_{3-\delta}$-NI 수소분리막 제조)

  • Park, Young-Soo;Choi, Jin-Sub;Byoun, Myoung-Sub;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.271-277
    • /
    • 2010
  • $(Ba(Zr_{0.85}Y_{0.15})O_{3-\delta})$ oxide, showing high protonic conductivity at high temperatures and good chemical stability with $CO_2$ are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BZY-Ni layer has to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and may be applicable to the fabrication process of AD integration ceramic layer effectively. XRD, SEM, X-ray mapping measurements were conducted in order to analyze the characteristics of BZY-Ni membrane fabricated by AD process. it is observed that it is homogeneous distribution for BZY-Ni. The result of $H_2$ permeation rate suggests that BZY-Ni composite is higher than BZY.

Large-Scale PSA Process for Hydrogen Separation from Gas Mixture (혼합가스에서 수소분리를 위한 애용량 PSA공정)

  • Choi, Dae-Ki;Jin, Yin-Zhe;Kang, Seok-Hyun;Row, Kyung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.8-20
    • /
    • 2006
  • For large scale separation hydrogen from different mixing ratio(60/40 and 80/20 vol.%) of hydrogen and methane $1Nm^3/hr$ and $4Nm^3/hr$ 2bed-6step pressure swing adsorption(PSA) process was used, respectively. The effects of the feed gas pressure, adsorption time, the feed flow rate and the P/F(purge to feed) ratio on the process performance were evaluated. In the $1Nm^3/hr$ PSA results, 11 atm adsorption pressure and 0.10 P/F ratio might be optimal values to obtain more than 75 % recovery and 99 % purity hydrogen in these processing. The optimum feed flowrate was 22 LPM and 17 LPM in the ratio 60/40 and 80/20, respectively. In the $4Nm^3/hr$ PSA results, 10 atm adsorption pressure might be simulated values to obtain more than 80 % recovery and 99 % purity hydrogen in these processing.

Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation ($CO_2/H_2$ 원천분리 SMART 시스템의 수소생산특성)

  • Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.382-390
    • /
    • 2007
  • To check the feasibility of SMART(Steam Methane Advanced Reforming Technology) system, an experimental investigation was performed. A fluidized bed reactor of diameter 0.052m was operated cyclically up to 10th cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone(domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) condition. The hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased. However, the average hydrogen concentration at 10th cycle was 82.5% and this value is also higher than that of SMR. Based on these results, we could conclude that the SMART system can replace SMR system to generate pure hydrogen without HTS (high tempeature shift), LTS (low temperature shift) and $CO_2$ separation process.

Synthesis of Silica Membranes on a Porous Stainless Steel by Sol-Gel Method and Effect of Preparation Conditions on Their Permselectivity

  • Lee, Dong-Wook;Nam, Seung-Eun;Sea, Bong-Kuk;Ihm, Son-Ki;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1371-1378
    • /
    • 2004
  • A porous stainless steel (SUS) as a substrate of silica composite membranes for hydrogen purification was used to improve mechanical strength of the membranes for industrial application. The SUS support was successfully modified by using submicron Ni powder, $SiO_2$ sols with particle size of 500 nm and 150 nm in turns. Silica top layer was coated on the modified supports under various preparation conditions such as calcination temperature, dipping time and repeating number of dipping-drying process. The calcination temperature for proper sintering was between H ttig temperature and Tamman temperature of the coating materials. Maximum hydrogen selectivity was investigated by changing dipping time. As repeating number of dipping-drying process increased, permeances of nitrogen and hydrogen were decreased and $H_2/N_2$ selectivity was increased due to the reduction of non-selective pinholes and mesopores. For the silica membrane prepared under optimized conditions, permeance of hydrogen was about $3\;{\times}\;10^{-5}\;cm^3{\cdot}cm^{-2}{\cdot}s^{-1}{\cdot}cmHg^{-1}$ combined with $H_2/N_2$ seletivity of about 20.

Hydrogen Production Using Membrane Reactors

  • Giuseppe Barbieri;Paola Bernardo;Enrico Drioli;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.68-74
    • /
    • 2003
  • Methane steam reforming (MSR) reaction for hydrogen production was studied in a membrane reactor (MR) using two tubular membranes, one Pd-based and one of porous alumina. A higher methane conversion than the thermodynamic equilibrium for a traditional reactor (TR) was achieved using MRs. The experimental temperature range was 350-500$^{\circ}C$; no sweep-gas was employed during reaction tests to avoid its back-permeation through the membrane and the steam/methane molar feed ratio (m) varied in the range 3.5-5.9. The best results (the difference between the MR conversion and the thermodynamic equilibrium was of about 7%) were achieved with the alumina membrane, working with the highest steam/methane ratio and at 450$^{\circ}C$. Silica membranes prepared at KRICT laboratories were characterized with permeation tests on single gases (N$_2$, H$_2$ and CH$_4$). These membranes are suited for H$_2$ separation at high temperature.