• Title/Summary/Keyword: hydrogen sensing

Search Result 145, Processing Time 0.022 seconds

A New Acridine-Imidazolium-Based Cholestane Receptor for Anion Sensing

  • Jadhav, Jyoti Ramesh;Ahmad, Md. Wasi;Kim, Hong-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2933-2937
    • /
    • 2011
  • A new highly selective receptor (3) based on an acridine-imidazolium functionalized cholestane for anion sensing was designed and synthesized. A binding study of 3 with various anions was assessed by UV-vis and fluorescence spectroscopies in dry CH3CN. Receptor 3 showed the highest selectivity toward hydrogen pyrophosphate (Ka = $1.5{\times}10^4M^{-1}$).

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

A Study on Sensing Method of the Stack Coolant Deficiency for FCEV (연료전지 차량 스택 냉각수 부족 감지 방법에 관한 연구)

  • Kim, Hyung Kook;Han, Su Dong;Nam, Gi Young;Kim, Chi Myung;Park, Yong Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.525-532
    • /
    • 2014
  • The sensing of a stack coolant deficiency is very important in that cooling performance of a fuel cell, overheating prevention of a stack or coolant heater. This paper explains the performance comparison between the coolant contact/noncontact level sensors and coolant deficiency sensing logic using the pressure sensor in a stagnant or circulating flow. Throughout the comparison, the pressure sensor is more suitable than the other sensors in terms of the precision, fast response, sensing frequency. After the experiment, the pressure sensor is equipped to an FCEV(Fuel Cell Electric Vehicle) to verify sensing definitely. There was no miss-sensing using pressure sensor while FCEV runs in the conditions of the paved road and cross country road.

Hydrogen Gas Sensing Characteristics of Pd-SiC Schottky Diode (Pd-SiC 쇼트키 다이오드의 수소 가스 감응 특성)

  • Kim, Chang-Kyo;Lee, Joo-Hun;Lee, Young-Hwan;Choi, Suk-Min;Cho, Nam-Ihn
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.448-453
    • /
    • 1999
  • A Pd-SiC Schottky diode for detection of hydrogen gas operating at high temperature was explored. Hydrogen-sensing behaviors of Pd-SiC Schottky diode were analyzed as a function of hydrogen concentration and temperature by I-V and ${\Delta}I$-t methods under steady-state and transient conditions. The effect of hydrogen adsorption on the barrier height was investigated. Analysis of the steady-state kinetics using I-V method confirmed that the atomistic hydrogen adsorption process is responsible for the barrier height change in the diode.

  • PDF

NO Gas Sensing of ACFs Treated by E-beam Irradiation in H2O2 Solution (과산화수소 용액에 담지 된 활성탄소섬유의 전자선 조사에 따른 일산화질소 가스 감응)

  • LEE, SANGMIN;PARK, MI-SEON;JUNG, MIN-JUNG;LEE, YOUNG-SEAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.298-305
    • /
    • 2016
  • In this study, we treated pitch-based activated carbon fibers (ACFs) in hydrogen peroxide using electron beam (E-beam) irradiation to improve nitrogen monoxide (NO) sensing ability as an electrode material of gas sensor. The specific surface area of ACFs treated by E-beam irradiation with 400 kGy increased from $885m^2/g$ (pristine) to $1160m^2/g$ without any changes in structural property and functional group. The increase in specific surface area of the E-beam irradiated ACFs enhanced NO gas sensing properties such as response time and sensitivity. When the ACFs irradiated with 400 kGy, response time was remarkably reduced from 360 s to 210 s and sensitivity was increased by 4.5%, compared to the pristine ACFs. These results demonstrate convincingly that surface modification of ACFs using E-beam in hydrogen peroxide solution can enhance textural properties of ACFs and NO gas sensing ability of gas sensor at room temperature.

Enhanced Hydrogen Gas Sensing Properties of ZnO Nanowires Gas Sensor by Heat Treatment under Oxygen Atmosphere (산소 분위기 열처리에 따른 ZnO 나노선의 상온 영역에서의 수소가스 검출 특성 향상)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.125-130
    • /
    • 2017
  • ZnO nanowires were synthesized and annealed at various temperatures of $500-800^{\circ}C$ in oxygen atmosphere to investigate hydrogen gas sensing properties. The diameter and length of the synthesized ZnO nanowires were approximately 50-100 nm and a few $10s\;{\mu}m$, respectively. $H_2$ gas sensing performance of the ZnO nanowires sensor was measured with electrical resistance changes caused by $H_2$ gas with a concentration of 0.1-2.0%. The response of ZnO nanowires at room temperature to 2.0% $H_2$ gas is found to be two times enhanced by annealing process in $O_2$ atmosphere at $800^{\circ}C$. In the current study, the effect of heat treatment in $O_2$ atmosphere on the gas sensing performance of ZnO nanowires was studied. And the underlying mechanism for the sensing improvement of the ZnO nanowires was also discussed.

Ultra Sensitive Detection of H2 in ZnO QD-based Sensors (ZnO양자점 기반 센서의 초고감도 수소 검지 특성)

  • Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.105-111
    • /
    • 2020
  • Interest and demand for hydrogen sensors are increasing in the field of H2 leakage detection during storage/transport/use and detection of H2 dissolved in transformer oil for safety issues as well as in the field of breath analysis for non-invasively diagnosing a number of disease states for a healthy life. In this study, various ZnO-based sensors were synthesized by controlling the reduction in crystallite size, decoration of Pt nanoparticles, doping of electron donating atoms, and doping of various atoms with different ionic radii. The sensing response of the various prepared ZnO-based nanoparticles and quantum dots (QDs) for 10 ppm H2 was investigated. Among the samples, the smallest-sized (3.5 nm) In3+-doped ZnO QDs showed the best sensing response, which is superior to those in previously reported hydrogen sensors based on semiconducting metal oxides. The higher sensing response of In-doped ZnO QDs is attributed to the synergic effects of the increased number of oxygen vacancies, higher optical band gap, and larger specific surface area.

Hydrogen Sensing Properties of ZnO-SWNTs Composite (산화아연과 단중벽 탄소나노튜브 복합체의 수소가스 감응 특성)

  • Jung, Jin-Yeun;Song, Hye-Jin;Kang, Young-Jin;Oh, Dong-Hoon;Jung, Hyuk;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.529-534
    • /
    • 2008
  • The hydrogen gas sensing properties of a zinc oxide nanowire structure were studied. Porous zinc oxide nanowire structures were fabricated by oxidizing zinc deposited on a single-wall carbon nanotube (SWNT) template. This revealed a porous ZnO-SWNT composite due to the porosity in the SWNT film. The gas sensing properties were compared with those of zinc oxide thin films deposited on SiO2/Si substrates in sensitivity and operating temperature. The composite structure showed higher sensitivity and lower operating temperature than the zinc oxide film. It showed a response even at room temperature while the film structure did not.

Granular Thin Film of Titanium Dioxide for Hydrogen Gas Sensor (입상의 이산화티타늄 박막을 이용한 수소센서)

  • Song, Hye-Jin;Oh, Dong-Hoon;Jung, Jin-Yeun;Nguyen, Duc Hoa;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.325-329
    • /
    • 2009
  • Titanium dioxide thin films were fabricated as hydrogen sensors and its sensing properties were tested. The titanium was deposited on a $SiO_2$/Si substrate by the DC magnetron sputtering method and was oxidized at an optimized temperature of $850^{\circ}C$ in air. The titanium film originally had smooth surface morphology, but the film agglomerated to nano-size grains when the temperature reached oxidation temperature where it formed titanium oxide with a rutile structure. The oxide thin film formed by grains of tens of nanometers size also showed many short cracks and voids between the grains. The response to 1% hydrogen gas was ${\sim}2{\times}10^6$ at the optimum sensing temperature of $200^{\circ}C$, and ${\sim}10^3$ at room temperature. This extremely high sensitivity of the thin film to hydrogen was due partly to the porous structure of the nano-sized sensing particles. Other sensor properties were also examined.

Effect of Methodologies for Laser-Induced Plasma Creation on Hydrogen Sensing (레이저 유도 플라스마 생성 방법이 수소 검출에 미치는 영향)

  • Jang, Jung-Ik;Kim, Ki-Bum
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.291-297
    • /
    • 2015
  • As promising future energy source, hydrogen has been drawing much attention; however, it is easily leaked from the small gap in any storage container due to its find molecule size. In this study, Laser induced breakdown spectroscopy(LIBS) was used for hydrogen leak detection, and feasibility of the scheme was evaluated based on different way for plasma generation. Laser power of 295 mW was required for generating plasma on metal surface to measure hydrogen atomic emission while approximately 2.5 times higher laser power was needed for plasma formation directly in the hydrogen gas stream. It was shown that peak to base ratio increased linearly with increasing the concentration of hydrogen. It can be concluded that LIBS is a viable technique for hydrogen sensing when the concentration of hydrogen is less than 5%.