• Title/Summary/Keyword: hydrogen production yield

Search Result 155, Processing Time 0.031 seconds

Effects of Linear Alkylbenzene Sulfonate on Hydrogen Fermentation of Food Waste (음식물류 폐기물의 수소 발효 시 linear alkylbenzene sulfonate의 영향)

  • LEE, CHAE-YOUNG;CHOI, JAE-MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • This study examines the effects of linear alkylbenzene sulfonate on hydrogen fermentation of food waste. The hydrogen production rate was similar with different linear alkylbenzen sulfonate (LAS) concentrations. The maximum hydrogen yield increased with increasing LAS concentration. The highest maximum hydrogen yield was $0.550{\pm}0.005mol$ H2/mol hexose at LAS for 5.52 mg/L. But the maximum hydrogen yield decreased above LAS for 11.05 mg/L. The concentration of acetate in control reactor was increased, but it decreased with increasing LAS concentration in other reactors.

A Study on the High-efficient Bioethanol Production Using Barley (보리를 이용한 고효율 바이오에탄올 생산 연구)

  • JEON, HYUNGJIN;GO, KYOUNG-MO;KIM, SHIN;JEONG, JUN-SEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.697-703
    • /
    • 2017
  • This study investigated the high-efficient process for bioethanol from barley by various condition. First, higher concentrations of ethanol could be produced without loss of yield by using reducing water consumption. This is because it could prevent to increase viscosity despite reducing water consumption. Second, the ethanol yield could be improved by using reducing particle size of biomass (increase of enzyme reactive surface). Third, The addition of protease could have a considerable effect on yield of fermentation, which provides nutrients to the yeast. This results showed that bioethanol production would provide efficient ethanol production and lower production costs.

Characteristics of fermentative hydrogen production by the chemoheterotrophic bacterium, Citrobacter sp. Y19

  • Seol, Eun-Hee;Oh, You-Kwan;Lee, Sang-Kil;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.419-422
    • /
    • 2002
  • Fermentative hydrogen production by Citrobacter sp. Y 19 was investigated in batch culture. Optimal hydrogen production activity was observed at pH 6 - 7 and temperature of $36^{\circ}C$, and hydrogen yield and maximal hydrogen production rate were 1.12 mmol/mmol glucose and 32.3 mmol/g cell${\cdot}$h, respectively. With glucose as a substrate, the bacterium produced ethanol, acetate, and carbon dioxide as major glucose fermentation by-products. Y19 could utilize various sugars such as galactose, fructose, lactose, sucrose, and starch for cell growth and hydrogen production.

  • PDF

Effect on the Concentration of Glucose and Sucrose on the Hydrogen Production using by the Facultative Anaerobic Hydrogen Producing Bacterium Rhodopseudomonas sp. MeL 6-2 (통성혐기성 수소생산균주 Rhodopseudomonas sp. MeL 6-2를 이용한 수소생산효율에 미치는 포도당 및 자당 농도의 영향)

  • Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.176-182
    • /
    • 2009
  • Hydrogen producing bacterium, strain MeL 6-2 was isolated from the sludge of the factory areas in Anyang through the acclimation in basal salt medium (BSM) supplemented with 10 g/L of sucrose. Isolated strain MeL 6-2 was a facultative anaerobe which could grow in both aerobic and anaerobic environments. An aerobically grown pure culture isolated from enriched culture was analyzed by 16S rDNA sequencing and identified as Rhodopseudomonas sp. MeL 6-2. Effects of the concentrations of glucose and sucrose on the hydrogen production rate and the hydrogen production yield were investigated. When glucose in the range of 1~12 g/L was supplemented to the BSM, strain MeL 6-2 could grow without lag phase. An increased glucose concentration increased the specific hydrogen production rate linearly to $4.2\;mmol-H_2{\cdot}L^{-1}{\cdot}h^{-1}$ at 10 g/L, and $60\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$, but decreased slightly as the concentration increased to 12 g/L. The hydrogen production yield was maintained over a range from 2.6 to $3.1\;mol-H_2{\cdot}mol-glucose^{-1}$. When sucrose in the range of 1~12 g/L was supplemented to the BSM, strain MeL 6-2 could grow after ten hours. An increased sucrose concentration increased the specific hydrogen production rate and the hydrogen production yield to $163\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$ and to $4.5\;mol-H_2{\cdot}mol-sucrose^{-1}$, respectively.

Influence of Substrate Concentration and Hydraulic Retention Time on the Hydrogen Production Using Anaerobic Microflora (혐기성 미생물을 이용한 수소생산에 있어서 기질농도 및 수리학적 체류시간의 영향)

  • Ko, In-Beom;Shin, Hang-Sik;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.911-916
    • /
    • 2006
  • The influence of substrate concentration and hydraulic retention time(HRT) on the hydrogen production by anaerobic microflora was investigated by conducting three series of continuous experiments the individual influences of substrate concentration and HRT. In series I, substrate concentration was increased from 3 to 27 g-glucose/L keeping HRT at 8 hr. Series II and III carried out same condition with series I at HRT of 16 hr and 24 hr, respectively. The effects of HRT and substrate concentration on the hydrogen production yield were analyzed by quadratic model. The maximum hydrogen production yield of 2.05 mol $H_2/mol$ glucose was found at the HRT of 9.6 hr and the substrate concentration of 15.4 g/L. The relationship between HRT and substrate concentration on hydrogen production yield as displayed a saddle shape in the response surface plot. Optimum HRT and substrate concentration are observed at in the range of 5 and 14 hr, at between 13 and 17 g/L, respectively, for the hydrogen production yield being 2 mol $H_2/mol$ glucose. The concentrations of organic acids increased with the increase of the amount of glucose consumption. Acetic acid and butyric acid were the main by-products from the glucose degradation.

Hydrogen Production from Microalgae in Anaerobic Mesophilic and Thermophilic Conditions (미세조류를 이용한 중온 및 고온 혐기성 수소 발효)

  • Han, Sun-Kee;Choi, Jae-Min;Lee, Chae-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.337-343
    • /
    • 2014
  • This study was conducted to evaluate the characteristics of dark fermentative $H_2$ production from microalgae (Chlorella vulgaris) using batch reactors under mesophilic (25, $35^{\circ}C$) and thermophilic (45, $55^{\circ}C$) conditions. The $H_2$ yield and $H_2$ production rate increased with increasing temperature. The maximum $H_2$ yield and $H_2$ production rate were 56.77 mL $H_2/g$ dcw, 3.33 mL $H_2/g\;dcw{\cdot}h$ at $55^{\circ}C$, respectively. The activation energy calculated using Arrhenius equation was 36.24 kcal/mol, which was higher than that of dark $H_2$ fermentation of glucose by anaerobic mixed culture. Although the concentration of butyrate was maintained, the concentrations of lactate and acetate increased with increasing temperature. The $H_2$ yield was linearly proportional to acetate/ butyrate ratio.

Effect of Heat Treatment on Biohydrogen Production from Food Waste (음식폐기물의 생물학적 수소 발효시 열처리 효과)

  • Lee, Chae-Young;Park, In-Geun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • Characteristic of hydrogen production was investigated to find the optimum heat pretreatment conditions for the anaerobic fermentation of food waste. The heat pretreatment of food waste enhanced the hydrogen yield due to the increase of soluble chemical oxygen demand (SCOD) and carbohydrate content. This result revealed that the maximum degrees of disintegration of SCOD and carbohydrate content were 55.1% and 223.6%, respectively. On the other hand, the improvement of hydrogen yield was insignificantly affected by heating reaction time at longer than 20 min; the increase of hydrogen yield was only about 7% between 20min and 1 hour. Therefore, the increase of reaction time more than 20min was not necessary.

Biofuel Production by Immobilized Living Cells - Hydrogen Production by Photosynthetic Bacteria - (고정화 미생물에 의한 에너지 생산 - 광합성 박테리아에 의한 수소 생산 -)

  • 조영일;선용호
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.303-309
    • /
    • 1985
  • Continuous production of hydrogen by Ca alginate-immobilized photosynthetic bacteria was studied in a packed-bed bioreactor. The dilution rate and input concentration of carbonaces substrate were selected as operating parameters. To choose the strain for immobilization, hydrogen productivities of Rhodopseudomonas caposulata 10006 and Rhodospirillum rubrum KS-301 were compared through preliminary batch cultures of their free cells: the former was found to show better hydrogen productivity in spite of its lower specific growth rate. For the continuous production of hydrogen by immobilized R capsulata, the optimum dilution rate was about 0.84 h$^{-1}$ . The Immobilized tells gave better hydrogen yield and conversion efficiency than free ones. And a kinetic parameter K'$_{m}$ was determined for the packed-bed bioreactor, being practically constant for a specific range of dilution rates.s.

  • PDF

Long Term Operation of Biological Hydrogen Production in Anaerobic Sequencing Batch Reactor (ASBR) (생물학적 수소생산을 위한 혐기성 연속 회분식 반응조(ASBR)의 장기운전 특성)

  • Jeong, Seong-Jin;Seo, Gyu-Tae;Lee, Taek-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Long term hydrogen production was investigated in an anaerobic sequencing batch reactor (ASBR) using mixed microflora. Glucose (about 8,250 mg/L) was used as a substrate for the ASBR operation under the condition of pH 5.5 and $37^{\circ}C$ with mixing at 150 rpm. The experiment was carried out over a period of 160 days. Hydrogen yield was 0.8mol $H_2/mol$ glucose with F/M ratio 2 at initial operation period. The hydrogen yield reached to maximum 2.6 mol $H_2/mol$ glucose at 80th day operation. However decreased hydrogen yield was observed after 80 days operation and eventually no hydrogen yield. Although well-known hydrogen producer Clostridium sp. was detected in the reactor by PCR-DGGE analysis, changed reactor operation was the major reason of the decreased hydrogen production, such as low F/M ratio of 0.5 and high propionic acid concentration 2,130 mg/L. Consequently the long period operation resulted in MLSS accumulation and then low F/M ration stimulating propionic acid formation which consumes hydrogen produced in the reactor.

Hydrogen Production by Gasification Technologies (가스화기술을 이용한 수소제조 기술)

  • 윤용승
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Gasification is the essential technology that can meet the interim hydrogen demand of large quantity before entering the hydrogen economy. Although the hydrogen production that is based upon the pure renewable energy like wind and solar power will eventually prevail, the interim mass production of hydrogen for the next ten to twenty years will come from the technologies that can demonstrate the economic feasibility in production cost with a high potential in minimizing CO$_2$ generation and in improving plant efficiency. Particularly, feedstock such as natural gas, coal, petroleum residual oil, wastes, and biomass appears to be utilized in Korea as hydrogen source, at least during the short and medium period of time, owing to the advantage in production cost. Because one of the main reasons behind the recent hydrogen issue is the reduction requirement of CO$_2$ that would be controlled according to the climate change protocol, hydrogen production technologies must be developed to yield the minimal CO$_2$ generation.