• 제목/요약/키워드: hydrogen peroxide (H2O2)

검색결과 937건 처리시간 0.036초

Effects of the different hydrogen peroxide ($H_{2}O_{2}$) treatment level on physiological and biochemical responses of olive flounder (Paralichthys olivaceus) (넙치 (Paralichthys olivaceus)에서의 과산화수소;($H_{2}O_{2}$) 처리 농도가 생리.생화학적 반응에 미치는 영향)

  • Choe, Mi-Kyung;Yeo, In-Kyu
    • Journal of fish pathology
    • /
    • 제20권3호
    • /
    • pp.269-279
    • /
    • 2007
  • This study was conducted to investigate the change of antioxidant enzyme activity (catalase and superoxide dismutase) and variation of blood physiology in olive flounder (Paralyticus olivaceus) by hydrogen peroxide (H2O2) treatment. Blood parameters were measured 1, 3 and 5 hours after H2O2 treatment with 0 (control), 100, 300 and 500 ppm for 1 hr. The value of hematocrit was decreased significantly dependently on treatment concentrate and elapsed time in the treatment of H2O2. Hemoglobin concentration in the test groups were lower than that of the control group. Red blood cell value in the test groups were significantly lower compared to that of the control group, but recovered to the level of the control group after 5 hr. Protein concentration was significantly lower compared to that of the control group at 0 and 1 hr, but recovered after 3 hr in 500 ppm treatment group. The superoxide dismutase (SOD) and catalase (CAT) enzyme activities were observed to be increased. Heat-shock protein 70 (HSP70) was significantly increased compared to that of control group in all of the test groups. HSP70 mRNA groups was highly expressed in 500 ppm treatment.

THE EFFECT OF CONCENTRATION AND APPLICATION TIME OF HYDROGEN PEROXIDE ON THE MICROTENSILE BOND STRENGTH OF RESIN RESTORATIONS TO THE DENTIN AT DIFFERENT DEPTHS (과산화수소의 농도와 적용시간이 상아질의 깊이에 따라 레진 수복물의 미세인장결합강도에 미치는 영향)

  • Son, Jeong-Lyong;Lee, Gye-Young;Kang, Yu-Mi;Oh, Young-Taek;Lee, Kwang-Won;Kim, Tae-Gun
    • Restorative Dentistry and Endodontics
    • /
    • 제34권5호
    • /
    • pp.406-414
    • /
    • 2009
  • The purpose of this study was to examine the effect of hydrogen peroxide at different application time and concentrations on the microtensile bond strength of resin restorations to the deep and the pulp chamber dentin. A conventional endodontic access cavity was prepared in each tooth, and then the teeth were randomly divided into 1 control group and 4 experimental groups as follows: Group 1, non treated; Group 2, with 20% Hydrogen peroxide ($H_2O_2$); Group 3, with 10% $H_2O_2$; Group 4, with 5% $H_2O_2$; Group 5, with 2.5% $H_2O_2$; the teeth of all groups except group 1 were treated for 20, 10, and 5min. The treated teeth were filled using a Superbond C&B (Sun medical Co., Shiga, Japan). Thereafter, the specimens were stored in distilled water at $37^{\circ}C$ for 24-hours and then sectioned into the deep and the chamber dentin. The microtensile bond strength values of each group were analyzed by 3-way ANOVA and Tukey post hoc test(p < 0.05). In this study, the microtensile bond strength of the deep dentin (D1) was significantly greater than that of the pulp chamber dentin (D2) in the all groups tested. The average of microtensile bond strength was decreased as the concentration and the application time of $H_2O_2$ were increased. Analysis showed significant correlation effect not only between the depth of the dentin and the concentration of $H_2O_2$ but also between the concentration of H202 and the application time(p < 0.05), while no significant difference existed among these three variables(p > 0.05). The higher $H_2O_2$ concentration, the more opened dentinal tubules under a scanning electron microscope(SEM) examination.

Antioxidant Effects of PanaX ginseng in Mouse GC-1 Spennatogonia Cells (인삼(人蔘)이 생쥐의 남성 생식세포 GC-1 spermatogonia의 항산화에 미치는 영향)

  • Shim, Kyung-Jun;Kang, Ji-Ung;Choi, Bong-Jae;Park, Soo-yeon;Chang, Mun-Seog;Park, Seong-Kyu
    • The Korea Journal of Herbology
    • /
    • 제24권2호
    • /
    • pp.93-98
    • /
    • 2009
  • Objectives : Previously we reported that the roots of Panax ginseng C.A. Meyer (Araliaceae) increased sperm count and motility. also induced spermatogenesis via cAMP-responsive element modulator(CREM) activation in rat testes. In this study, for the first step of spermatogenesis in germ cell lines, the antioxidant activity of Panax ginseng were examined in mouse GC-1 spermatogonia cells. Methods : The extract was studied on diphenyl-picryl-hydrazyl (DPPH) radical scavenging activity, GC-1 cell viability by a modified MIT assay. H202-induced cytotoxicity by MIT assay and lipid peroxidation by malondialdehyde (MDA) formation. respectively. Results: The results showed that the extract scavenged DPPH radical with the IC50 being 0.631 mg/mi. The extract at concentrations of 5, and 10, 50, 100, 250 ${\mu}$g/mi increased GC-1 cell viability significantly(p < 0.05, and p < O.O1). Hydrogen peroxide-induced cytotoxicity (73.8%, p < O.O1) was blocked by the extract at concentrations of 50, and 100, 250, 500 ${\mu}$g/ml significantly (p < 0.05, and p < O.O1). The extract at concentrations of 10. and 50 ${\mu}$g/ml decreased the MDA formation on hydrogen peroxide-induced lipid peroxidation. Conclusions : In conclusion, the extract of Panax ginseng has potent antioxidant activity and increases the survival rate of GC-1 spg cells against $H_20_2$-induced cytotoxicity.

Antioxidant Activity of the Water Soluble Browning Reaction Products Isolated from Korean Red Ginseng 1. DPPH Radical and Hydrogen Peroxide Scavenging (홍삼으로부터 분리한 수용성 갈변물질의 항산화 활성 1. DPPH의 수소공여능 및 hydrogen peroxide 소거능 중심으로)

  • Lee Jong-Won;Do Jae-Ho;Shim Ki-Hwan
    • Journal of Ginseng Research
    • /
    • 제23권3호
    • /
    • pp.176-181
    • /
    • 1999
  • The purpose of this study was to investigate the antioxidant activities of water soluble browning reaction products (WS-BRPs) isolated from korea red ginseng. Antioxidant activities of WS-BRPs were examined with the various systems. All three WS-BRPs (L, S-1 and S-2) were found to have an ability to donate hydrogen to DPPH. Especially, L was more effective than S-1, S-2. and, L as well as S-1 and S-2 was the strongest than BHT, BHA $(5{\times}10^{-4}M),\;{\alpha}-tocopherol\;(1.0{\times}10^{-4})$ and ascorbic acid $(5.7{\times}10^{-3}M)$ previously known as antioxidants. These WS-BRPs (L, S-1 and S-2) also showed a synergistic effect against antioxidative activities of these antioxidants. Moreover S-2 had the strongest activity of these three WS-BRPs to scavenge free radicals such as hydrogen peroxide $(H_2O_2)$.

  • PDF

Antioxidant Activity of Glycyrrhiza uralensis Fisch Extracts on Hydrogen Peroxide-induced DNA Damage in Human Leucocytes and Cell Death in PC12 Cells

  • Lee, Hyun-Jin;Yoon, Mi-Young;Kim, Ju-Young;Kim, Yong-Seong;Park, Hae-Ryong;Park, Eun-Ju
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.343-348
    • /
    • 2008
  • In this study, antioxidant activity of methanol extract of Glycyrrhiza uralensis Fisch (GUE) against $H_2O_2$-induced DNA damage in human leucocytcs and cell death in PC12 cells was determined. The effect of GUE on $H_2O_2$-induced DNA damage in human leucocytcs was evaluated by the comet assay, where GUE ($1-50\;{\mu}g/mL$) was a dose dependent inhibitor of DNA damage induced by $H_2O_2$. The protective effect of GUE against $H_2O_2$-induced damage on PC12 cells was investigated by MTT reduction assay and lactate dehydrogenase release assay. A marked reduction in cell survival induced by $H_2O_2$ was significantly prevented by $1-50\;{\mu}g/mL$ of GUE. The enzyme activity of caspase-3 was elevated in $H_2O_2$-treated PC12 cells, while preincubation with GUE for 30 min inhibited $H_2O_2$-induced caspase-3 activation in a dose-dependent manner. In conclusion, GUE ameliorates $H_2O_2$-induced DNA damage in human leucocytes and has neuroprotective effect by preventing cell death in PC12 cell, suggesting that GU may be a potential candidate for novel therapeutic agents for neuronal diseases associated with oxidative stress.

Promoting Effect of Hydrogen Peroxide on 1-Methyl-4-phenylpyridinium-induced Mitochondrial Dysfunction and Cell Death in PC12 Cells

  • Lee, Dong-Hee;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.51-58
    • /
    • 2006
  • The promoting effect of hydrogen peroxide ($H_2O_2$) against the cytotoxicity of 1-methyl-4-phenylpyridinium ($MPP^+$) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with $MPP^+$ resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Addition of $H_2O_2$ enhanced the $MPP^+-induced$ nuclear damage and cell death. Catalase, Carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the cytotoxic effect of $MPP^+$ in the presence of $H_2O_2$. Addition of $H_2O_2$ promoted the change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to $MPP^+$ in PC12 cells. The results show that the $H_2O_2$ treatment promotes the cytotoxicity of $MPP^+$ against PC12 cells. $H_2O_2$ may enhance the $MPP^+$-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that $H_2O_2$ as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by neurotoxins.

Kinetics of veratryl alcohol oxidation by lignin peroxidase and in-situ generated $H_2O_2$ in an electrochemical reactor

  • Lee, Gi-Beom;Gu, Man-Bok;Mun, Seung-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.524-527
    • /
    • 2000
  • An electroenzymatic system to oxidize veratryl alcohol of on electrodes with in-situ generated hydrogen peroxide was studied. We investigated hydrogen peroxide generation, current efficiency, and veratryl alcohol oxidation in the electrode system at various conditions. The reaction rates of veratryl alcohol oxidation were compared in an electrochemical, an electroenzymatic, and an usual biochemical systems to prove the concept of electroenzymatic oxidation.

  • PDF

Oxidative Modification of Neurofilament-L by Copper-catalyzed Reaction

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • 제36권5호
    • /
    • pp.488-492
    • /
    • 2003
  • Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for neuronal survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of copper and peroxide in the modification of NF-L. When disassembled NF-L was incubated with copper ion and hydrogen peroxide, then the aggregation of protein was proportional to copper and hydrogen peroxide concentrations. Dityrosine crosslink formation was obtained in copper-mediated NF-L aggregates. The copper-mediated modification of NF-L was significantly inhibited by thiol antioxidants, N-acetylcysteine, glutathione, and thiourea. A thioflavin-T binding assay was performed to determine whether the copper/$H_2O_2$ system-induced in vitro aggregation of NF-L displays amyloid-like characteristics. The aggregate of NF-L displayed thioflavin T reactivity, which was reminiscent of amyloid. This study suggests that copper-mediated NF-L modification might be closely related to oxidative reactions which may play a critical role in neurodegenerative diseases.

Agmatine Reduces Hydrogen Peroxide in Mesangial Cells under High Glucose Conditions

  • Lee, Geun-Taek;Ha, Hun-Joo;Lee, Hyun-Chul;Cho, Young-Dong
    • BMB Reports
    • /
    • 제36권3호
    • /
    • pp.251-257
    • /
    • 2003
  • Agmatine, an amine and organic cation, reduced $H_2O_2$ that was generated by hyperglycemia, and transcription factors such as NF-${\kappa}B$ and AP-1 activity in the mesangial cells that were exposed to high glucose. However, spermine which shares a strong nucleophilic structure with agmatine decreased the $H_2O_2$ levels and AP-1, but not the NF-${\kappa}B$ activity. Possible roles for agmatine and spermine in decreasing fibronectin are discussed, and the signaling pathway for agmatine-reduced fibronectin accumulation is presented.

Isolation of the Regulator Gene Responsible for Overproduction of Catalase A in $H_2O$$_2$-resistant Mutant of Streptomyces coelicolor

  • Hahn, Ji-Sook;Oh, So-Young;Keith F. Chater;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • 제38권1호
    • /
    • pp.18-23
    • /
    • 2000
  • Streptomyces coelicolor produces three kinds of catalases to cope with oxidative stress and to allow normal differentiation. Catalase A is the major vegetative catalase which functions in removing hydrogen peroxide generated during the process of aerobic metabolism. To understand the regulatory mechanism of response against oxidative stress, hydrogen peroxide-resistant mutant (HR4O) was isolated from S. coelicolor J1501 following UV mutagenesis. The mutant overproduced catalase A more than 50-fo1d compared with the wild type. The mutation locus catRI was mapped closed to the mthB2 locus by genetic crossings. An ordered cosmid library of S. coelicolor encompassing the mthB2 locus was used to isolate the regulator gene (catR) which represses catalase overproduction when introduced into HR4O. A candidate catR gene was found to encode a Fur-like protein of 138 amino acids (15319 Da).

  • PDF