• 제목/요약/키워드: hydrogen peroxide$(H_2O_2)$

검색결과 925건 처리시간 0.032초

과산화수소를 이용한 철(Fe)선 용해반응에 따른 청정기술 개발에 관한 연구 (A clean technology development using the iron(Fe) dissolution reaction with hydrogen peroxide)

  • 김재우
    • 환경위생공학
    • /
    • 제16권4호
    • /
    • pp.62-68
    • /
    • 2001
  • The advantages of hydrogen peroxide dissolution method were no discharge of noxious matter when dissolution of iron wire which used as the center supporter, reactions occur in room temperature and easy to recover dissolved iron. This study was aimed at gathering the basic data of iron wire dissolution- recovery process and proposes the reaction condition of iron wire dissolution- recovery process rind the factors influencing those reactions. The results were as follows : 1 . Hydrogen peroxide dissolution method used hydrochloric acid as the catalyst. 1. In the dissolution of iron wire(1.668 g), the condition of reaction was E1702(30 ml), HCI(20 ml) and $H_2O$(200 ml) ; time of the reaction was 18 min. P.W.(Piece weight) was 7.75 mg, and C.R. was $2.34{\;}{\Omega}$ 2. In the dissolution of iron wire(1.529 g), the condition of reaction was H7O2(30 ml), HCI(20 ml) and $H_2O$(200 ml), time of the reaction was 21 min., P.W.(Piece weight) was 7.73 mg, and C.R. was $2.35{\;}{\Omega}$. Hydrogen peroxide dissolution method used sulfuric acid as the catalyst. 1. In the dissolution of iron wire(0.834 g), the condition of reaction was $H_2O$(65 ml), $H_2SO_4$(5 ml) and 1702(5 ml) ; time of the reaction was 5 min.30 sec, P.W.(Piece weight) was 7.74 mg, and C.R. was $2.33{\;}{\Omega}$ 2. In the dissolution of iron wire(1.112 g), the condition of reaction was $H_2O$(65 ml), $H_2SO_4$(5 ml) and $H_2O_2$(5 ml) ; time of the reaction was 4 min.30 sec, P.W.(Piece weight) was 7.75 mg, and C.R. was $2.33{\;}{\Omega}$. Hydrogen peroxide dissolution method used hydrochloric acid and sulfuric acid as the catalyst confirmed a clean technology, because there were not occurred a pollutant discharged in the existing method.

  • PDF

KINETICS OF ATRAZINE OXIDATION BY UV RADIATION AND OXALATE ASSISTED H2O2/UV PROCESSES

  • Choi, Hyun-Jin;Choi, Jong-Duck;Kim, Hyun-Kab;Lee, Tae-Jin
    • Environmental Engineering Research
    • /
    • 제11권1호
    • /
    • pp.28-32
    • /
    • 2006
  • The degradation of atrazine was explored using UV alone, $H_2O_2/UV$, oxalate/UV and oxalate-assisted $H_2O_2/UV$. The addition of oxalate to the $H_2O_2/UV$ (oxalate-assisted $H_2O_2/UV$) process was the most effective method for the degradation of atrazine. The overall kinetic rate constant was split into the direct oxidation due to photolysis and that by the radicals from hydrogen peroxide or oxalate. In semi-empirical terms, the initial concentration of hydrogen peroxide had a greater contribution than that of oxalate for atrazine oxidation.

볏짚 사료가치 증진을 위한 알카리성 과산화수소의 적정 처리수준 (The Optimum Levels of Alkaline Hydrogen Peroxide Treatment of Rice Straw for Feed)

  • 최윤희;김명숙;홍재식
    • Applied Biological Chemistry
    • /
    • 제37권5호
    • /
    • pp.320-325
    • /
    • 1994
  • 볏짚의 사료가치를 증진시키기 위하여 알카리성 과산화수소를 이용하여 볏짚에 대한 처리수준별 화학성분의 변화와 in vitro 소화율을 조사 검토하였다. $H_2O_2(pH 11.5)$의 처리농도를 증가시킬수록 neutral detergent fiber(NDF), acid detergent fiber(ADF), hemicellulose, cellulose 및 lignin이 감소하였으며 $H_2O_2(pH 11.5)$를 처리한 후 수세시는 농도가 증가할수록 NDF, hemicellulose 및 lignin은 감소한 반면 ADF, cellulose, 회분은 증가하였다. 알카리성 과산화수소의 농도를 4%로 조정하여 처리하였을 때 pH는 $11.5{\sim}12.5$에서, 온도는 $55^{\circ}C$에서 세포벽구성물질의 분해에 효과적이었으며, 4% $H_2O_2(pH 11.5)$ 처리시 볏짚의 크기가 작을수록 잔류건물 중, hemicellulose, cellulose 및 lignin이 감소하였다. 알카리성 과산화수소의 처리에 의한 in vitro 소화율은 처리농도 및 pH가 증가할수록 볏짚의 크기가 작을수록 증가하였다.

  • PDF

l00N $H_2O_2$ Monopropellant 로켓 엔진의 개발 (Development of a Hydrogen-Peroxide Rocket Engine of l00N Thrust)

  • Sang-Hee Ahn;S. Krishnan;Choog-Won Lee
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2003
  • There has been a renewed interest in the use of hydrogen peroxide as an oxidizer in bipropellant liquid rocket engines as well as in hybrid rocket engines. This is because hydrogen peroxide is a propellant of low toxicity and enhanced versatility. The present paper details the features of the designed engine of l00N thrust and its facility. Also explained is the arrangement of the distillation unit to be used to prepare rocket-grade hydrogen-peroxide propellant. Results of the simulated "cold" tests are presented.

  • PDF

An electrochemical hydrogen peroxide sensor for applications in nuclear industry

  • Park, Junghwan;Kim, Jong Woo;Kim, Hyunjin;Yoon, Wonhyuck
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.142-147
    • /
    • 2021
  • Hydrogen peroxide is a radiolysis product of water formed under gamma-irradiation; therefore, its reliable detection is crucial in the nuclear industry for spent fuel management and coolant chemistry. This study proposes an electrochemical sensor for hydrogen peroxide detection. Cysteamine (CYST), gold nanoparticles (GNPs), and horseradish peroxidase (HRP) were used in the modification of a gold electrode for fabricating Au/CYST/GNP/HRP sensor. Each modification step of the electrode was investigated through electrochemical and physical methods. The sensor exhibited strong sensitivity and stability for the detection and measurement of hydrogen peroxide with a linear range of 1-9 mM. In addition, the Michaelis-Menten kinetic equation was applied to predict the reaction curve, and a quantitative method to define the dynamic range is suggested. The sensor is highly sensitive to H2O2 and can be applied as an electrochemical H2O2-sensor in the nuclear industry.

UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거 (Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process)

  • 박진영;서상원;조익환;전용성;하현섭;황태문
    • 상하수도학회지
    • /
    • 제33권6호
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.

사물탕(四物湯)이 혈관내피세포(血管內皮細胞)에 미치는 영향(影響) (Effects of Samul-Tang Extract on Vascular Endothelial Cells from Hydrogen Peroxide-induced Injury)

  • 남창규;김영균;문병순
    • 대한한방내과학회지
    • /
    • 제20권1호
    • /
    • pp.83-98
    • /
    • 1999
  • This study is designed to investigate the effects of Samul-Tang extract on the response of lactic dehydrogenase(LDH) release, cellular activity, lipid peroxidation, DNA synthesis and the changes of total protein of bovine pulmonary artery endothelial cells(PAEC) from hydrogen peroxide$(H_2O_2)$-induced injury. The results are as follows : 1. Samul-Tang significantly decreased $H_2O_2$-induced release of LDH from injured bovine PAEC. 2. Samul-Tang significantly repressed $H_2O_2$-induced cellular activity from injured bovine PAEC. 3. Samul-Tang significantly repressed $H_2O_2$-induced lipid peroxidation from injured bovine PAEC. 4. Samul-Tang significantly stimulated DNA synthesis in bovine PAEC. 5. Samul-Tang significantly repressed $H_2O_2$-induced changes of total protein volume from injured bovine PAEC. Above results suggest that Samul-Tang can protect bovine PAEC from $H_2O_2$-induced injury. These results can be effectively applied to the prevention and cure of cardiovascular and cerebrovascular diseases.

  • PDF

신경교세포주 C6 glial에서 Zinc의 Hydrogen Peroxide($H_2O_2$) 생성을 통한 세포고사 (Zinc-induced Apoptosis in C6 glial Cells via Generation of Hydrogen Peroxide($H_2O_2$))

  • 이지현;김명선;소흥섭;김남송;조광호;이향주;이기남;박길래
    • Toxicological Research
    • /
    • 제16권3호
    • /
    • pp.179-185
    • /
    • 2000
  • Zinc is known to generate reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide ($H_2O_2$), which eventually contribute to cytotoxicity in a variety of cell types. Here in, we demonstrated that zinc decreased the viability of C6 glial cells in a time and dose-dependent manner, which was revealed as apoptosis characterized by ladder-pattern fragmentation of genomic DNA. chromatin condensation and DNA fragmentation in Hoechst dye staining. Zinc-induced apoptosis of C6 glial cells was prevented by the addition of catalase and antioxidants including reduced glutathione (GSH), N-acetyl-L-cysteine (NAC) and pyrrolidinedithiocarbamate (PDTC). Wefurther confirmed that zinc decreased intrac-ellular levels of GSH and generated $H_2O_2$in C6 glial cells. Moreover, antioxidants also decreased the generation of zinc-induced $H_2O_2$ in C6 glial cells. These data indicated that zinc-induced the apoptotic death of C6 glial cells via generation of reactive oxygen species such as $H_2O_2$.

  • PDF

연속흐름식 반응기를 이용한 TiO2/H2O2/UV에 의한 클로로페놀 제거(除去)에 관한 실험적(實驗的) 연구(硏究) (An Experimental Study on the Removal of Chlorophenol by TiO2/H2O2/UV Using Continuous flow Reactor)

  • 이상협;박주석;박중현;김동하
    • 상하수도학회지
    • /
    • 제12권3호
    • /
    • pp.55-64
    • /
    • 1998
  • The degradation efficiency of chlorophenolic compounds in $TiO_2/H_2O_2$ combined system was compared with that of in $TiO_2$ sole system. As a result, the addition of hydrogen peroxide in photocatalytic oxidation reaction greatly enhanced the degradation efficiency of chlorophenolic compounds due to the availability of the hydroxyl radical formed on the $TiO_2$ surface. The hydrogen peroxide under UV illumination produces hydroxyl radicals that appear to be another source of hydroxyl radical formation. These results indicated the $TiO_2/H_2O_2$ combined system shows higher degradation efficiency than the $TiO_2$ sole system. Compared to another oxidation reaction, hydrogen peroxide assisted photocatalytic oxidation is more promising in practical aspect.

  • PDF

Hydrogen peroxide로 산화적 스트레스가 유도된 HaCaT keratinocyte에서 금은화의 세포 보호 효과 (Protectvie effects of Lonicerae Japonicae Flos against hydrogen peroxidase-induced oxidative stress on Human keratinocyte, HaCaT cells)

  • 서승희;최미옥
    • 대한본초학회지
    • /
    • 제28권4호
    • /
    • pp.57-62
    • /
    • 2013
  • Objectives : Lonicerae Japonicae Flos (LJF) has been shown anti-oxidant, anti-inflammatory, anti-viral, anti-rheumatoid properties. However, it is still largely unknown whether LJF inhibits skin injury against oxidative stress in human keratinocyte, HaCaT cells. The purpose of this study was to evaluate the protective effects of LJF against hydrogen peroxide($H_2O_2$)-induced oxidative stress in human keratinocytes, HaCaT cells. Methods : To evaluate out the protective effects of LJF on oxidative injury in HaCaT cells, an oxidative stress model of HaCaT cells was established under a suitable concentration (500 ${\mu}M$) hydrogen peroxide. HaCaT keratinocyte cells were pre-treated with LJF (0.1, 0.25 or 0.5 mg/ml), and then stimulated with $H_2O_2$. Then, the cells were harvested to measure the cell viability, DNA damage, and release of reactive oxygen species (ROS). Results : LJF (0.1, 0.25 or 0.5 mg/ml) itself did not show any significant toxicity in HaCaT cells. The treatment of $H_2O_2$ caused the oxidative stress, leading to the cell death, and DNA injury. However, pretreatment with LJF reduced cell death, and DNA injury. The stimulation of $H_2O_2$ on HaCaT cells resulted in excessive release of ROS, which is the main factor of oxidative stress. The excessive release of ROS was inhibited by LJF treatment significantly. Conclusions : These results could suggest that LJF exhibited the protective effects of HaCaT cells against $H_2O_2$-induced oxidative stress by inhibiting ROS release. It could be explained that LJF inhibit skin damages against oxidative stress. Thus, LJF would be useful for the development of drug or cosmetics treating skin troubles.