• Title/Summary/Keyword: hydrogen peroxide$(H_2O_2)$

Search Result 925, Processing Time 0.032 seconds

Comparison of Antioxidant Activities of Enzymatic and Methanolic Extracts from Ecklonia cava Stem and Leave (감태(Ecklonia cava) 줄기 및 잎의 효소적 추출물과 메탄올 추출물에 의한 항산화 활성비교)

  • Lee, Seung-Hong;Kim, Kil-Nam;Cha, Seon-Heui;Ahn, Gin-Nae;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1139-1145
    • /
    • 2006
  • In this study, antioxidant activities of enzymatic and methanolic extracts from E. cava stem and leave were evaluated by measuring the scavenging activities on 1,1 diphenyl 2 picrylhydrazyl (DPPH), hydroxyl radical, hydrogen peroxide and the inhibitory effects on DNA damage induced by oxidative stress of cells. Enzymatic extracts were prepared by enzymatic hydrolysis of both stem and leave using food grade five different carbohydrases (Viscozyme, Celluclast, AMG, Termamyl, Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase). The enzymatic extracts were lower than methanolic extracts in polyphenol contents, but higher in extraction yield by approximately 30%. The enzymatic extracts were superior to methanolic extracts in DPPH and H2O2 scavenging activities and DNA damage protective effect. There were no significant antioxidant activity difference between stem and leave, but the extracts of leave were relatively better than those of stem. In this study it is suggested that E. cava stem as well as its leave would be a good raw materials for antioxidants compound extraction and enzymatic hydrolysis would be a good strategy to prepare antioxidant extracts from seaweeds.

Effects of Turmeric (Curcuma longa L.) on Antioxidative Systems and Oxidative Damage in Rats Fed a High Fat and Cholesterol Diet (울금(Curcuma longa L.)이 고지방·고콜레스테롤 식이 흰쥐의 항산화계 및 산화적 손상에 미치는 영향)

  • Kim, Min-Sun;Chun, Sung-Sik;Choi, Jeong-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.570-576
    • /
    • 2013
  • The purpose of this study was to investigate the effect of turmeric on antioxidative systems and oxidative damage in rats fed a high fat and cholesterol diet. A total 40 rats were divided into four experimental groups: a normal diet group (N), a high fat and cholesterol diet group (HF), a high fat and cholesterol diet group supplemented with 2.5% turmeric powder (TPA group) and a high fat and cholesterol diet group supplemented with 5% turmeric powder (TPB group). The serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activity of the turmeric supplemented groups were decreased compared to the HF group. The GPT activity of the TPB group was especially and significantly decreased compared to the HF group. Hepatic superoxide dismutase (SOD) of the TPB group was significantly increased compared to the HF group. However, there were no significant differences in the activities of hepatic glutathione peroxidase (GSHpx) and catalase (CAT) among all experimental groups. Hepatic glutathione S-transferase (GST) activity in the TPA and TPB groups were increased compared to the HF group. Hepatic superoxide radical content in mitochondria of the 5% turmeric supplemented group was significantly decreased compared to the HF group. Hepatic hydrogen peroxide content in the cytosol and mitochondria of the turmeric-supplemented groups were decreased compared to the HF group. Hepatic carbonyl values in the mitochondria of the turmeric supplemented groups were significantly decreased compared to the HF group. Thiobarbituric acid reaction substance (TBARS) values in the liver were significantly reduced in turmeric supplemented groups compared to the HF group. These result suggest that turmeric powder may reduce oxidative damage through the activation of antioxidative defense systems in rats fed high fat and cholesterol diets.

Comparison of Paraquat Actions on Oxygen Radical Generation and Lipid Peroxidation between Submitochondrial Particle and Microsome of Mouse Liver (Paraquat에 의한 산소 Radical 생성 및 지질과산화 작용의 Mouse 간 Submitochondria Particle과 Microsome에서의 비교)

  • Choi, Jung-Hwan;Kim, Yong-Sik;Park, Jong-Hwan;Chung, Myung-Hee;Yunn, Chong-Ku
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1991
  • In order to evaluate a potential role of mitochondria in the mediation of toxicity of paraquat (PQ), submitochondrial particle and microsome of mouse liver were compared by oxygen radical generation and lipid peroxidation. With NADH in submitochondrial particle and NADPH in microsome as electron donors, PQ stimulated production of superoxide anion and $H_2O_2$ in both fractions. Under the same conditions, PQ enhanced the generation of ethylene from methional suggestiong stimulation of OH production by PQ. But these effects by PQ were somewhat lower in submitochondrial particle than in microsome. In addition, lipid peroxidation(measured as MDA production) was stimulated by PQ in both fractions. The stimulation of lipid peroxidation in both fractions seemed to occur by the same mechanism probably through perferryl ion. This was supported by the following findings: i) The lipid peroxidation in both fractions was partially inhibited by SOD and completely inhibited by DETAPAC(an iron chelator) but not by catalase or OH scavenger. ii) Addition of $ADP-Fe^{3+}$ further increased PQ-induced lipid peroxidation but decreased ethylene production from methional suggesting no correlation between OH production and lipid peroxidation. The redox-cycling of PQ in mitochondria appeared to be linked to NADH dehydrogenase, not to CoQ since all of the observed stimulations by PQ in submitochondrial particle were inhibited by p-hydroxymercuribenzoate(a NADH dehydrogenase inhibitor) but not affected by other respiratory chain blockers. The above results demonstrate that redox-cycling properties of PQ leading to oxygen radical generation and lipid peroxidation can also occur in mitochondria in the same manner as in microsome. Therefore, the observed actions of PQ in mitochondria suggest that mitochondria may also contribute to toxicity of this drug in vivo.

  • PDF

Effect of Red Pepper Seeds Powder on Antioxidative System and Oxidative Damage in Rats Fed High-Fat.High-Cholesterol Diet (고추씨가 고지방.고콜레스테롤 식이 흰쥐의 항산화계 및 산화적 손상에 미치는 영향)

  • Song, Won-Young;Yang, Jeong-Ah;Ku, Kyung-Hyung;Choi, Jeong-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.9
    • /
    • pp.1161-1166
    • /
    • 2009
  • The purpose of the present study was to effect of red pepper seeds powder on antioxidative defense system and oxidative damage in rats fed high fat high cholesterol diet. Rats were divided into five experimental groups which are composed of normal diet group, high fat high cholesterol diet group, high fat high cholesterol diet with 5% red pepper seeds powder supplemented group (SA group), high fat high cholesterol diet with 10% red pepper seeds powder supplemented group (SB group), and high fat.high cholesterol diet with 15% red pepper seeds powder supplemented group (SC group). Supplementation of red seed pepper groups (SA, SB, and SC groups) resulted in increased activities of hepatic glutathione peroxidase and superoxide dismutase. However, there was no significant difference in the activity of hepatic catalase among all experimental groups. Hepatic superoxide radical contents in microsome and mitochondria were significantly reduced in red pepper seeds powder supplemented groups. Hepatic hydrogen peroxide contents in mitochondria were significantly reduced 15% red pepper seeds powder supplemented group. Hepatic carbonyl values in microsome were significantly reduced in 10% and 15% red pepper seeds powder supplemented groups. Thiobarbituric acid reaction substance (TBARS) values in liver and plasma were reduced in red pepper seeds powder supplemented groups. These result suggest that red pepper seeds powder may reduce oxidative damage by the activation of antioxidative defense system in rats high fat.high cholesterol diets.

Effect of Spirodela polyrhiza on Antioxidant Activity in Diet-induced Obese Rats (고지방 및 고콜레스테롤 식이로 유도 된 비만 쥐에서 부평초의 간 조직에서의 항산화 활성에 미치는 영향)

  • Song, Won-Yeong;Choi, Jeong-Hwa
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.488-495
    • /
    • 2021
  • The aim of this study was to investigate the possible antioxidant effect of Spirodela polyrhiza (SP) on rats fed a high fat and high cholesterol diet supplemented with either 5% (SPA group) or 10% (SPB group) SP for 4 weeks. The hepatic SOD activity of the HF group significantly decreased compared to that of the N group, but that of the SPA and SPB groups significantly increased. The GPx activity of the SPA and SPB groups in the liver was significantly greater than that of the HF group, and the hepatic catalase activity of the SPA and SPB groups significantly increased compared to the HF group. The hepatic superoxide radical content of the mitochondria and microsomes of the HF group significantly increased compared to that of the N group, but the contents were reduced in the group that took SP powder. The hepatic hydrogen peroxide content in the cytosol and mitochondria of the SP powder group was lower than in the HF group. The carbonyl content in the mitochondria and microsomes of the SPA and SPB groups was significantly lower than in the HF group. The TBARS values in the liver significantly decreased in the SPA and SPB groups. Spirodela polyrhiza was thus effective in reducing oxidative stress by regulating the hepatic antioxidant enzymes and the free radicals in rats fed high fat and high cholesterol diets.