DOI QR코드

DOI QR Code

Effects of Turmeric (Curcuma longa L.) on Antioxidative Systems and Oxidative Damage in Rats Fed a High Fat and Cholesterol Diet

울금(Curcuma longa L.)이 고지방·고콜레스테롤 식이 흰쥐의 항산화계 및 산화적 손상에 미치는 영향

  • Kim, Min-Sun (Dept. of Food Science, International University of Korea) ;
  • Chun, Sung-Sik (Dept. of Food Science, International University of Korea) ;
  • Choi, Jeong-Hwa (Dept. of Food and Nutrition, International University of Korea)
  • 김민선 (한국국제대학교 식품과학과) ;
  • 전성식 (한국국제대학교 식품과학과) ;
  • 최정화 (한국국제대학교 식품영양학과)
  • Received : 2012.12.06
  • Accepted : 2013.02.04
  • Published : 2013.04.30

Abstract

The purpose of this study was to investigate the effect of turmeric on antioxidative systems and oxidative damage in rats fed a high fat and cholesterol diet. A total 40 rats were divided into four experimental groups: a normal diet group (N), a high fat and cholesterol diet group (HF), a high fat and cholesterol diet group supplemented with 2.5% turmeric powder (TPA group) and a high fat and cholesterol diet group supplemented with 5% turmeric powder (TPB group). The serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activity of the turmeric supplemented groups were decreased compared to the HF group. The GPT activity of the TPB group was especially and significantly decreased compared to the HF group. Hepatic superoxide dismutase (SOD) of the TPB group was significantly increased compared to the HF group. However, there were no significant differences in the activities of hepatic glutathione peroxidase (GSHpx) and catalase (CAT) among all experimental groups. Hepatic glutathione S-transferase (GST) activity in the TPA and TPB groups were increased compared to the HF group. Hepatic superoxide radical content in mitochondria of the 5% turmeric supplemented group was significantly decreased compared to the HF group. Hepatic hydrogen peroxide content in the cytosol and mitochondria of the turmeric-supplemented groups were decreased compared to the HF group. Hepatic carbonyl values in the mitochondria of the turmeric supplemented groups were significantly decreased compared to the HF group. Thiobarbituric acid reaction substance (TBARS) values in the liver were significantly reduced in turmeric supplemented groups compared to the HF group. These result suggest that turmeric powder may reduce oxidative damage through the activation of antioxidative defense systems in rats fed high fat and cholesterol diets.

본 연구는 흰쥐에 고지방 고콜레스테롤 식이와 함께 울금 분말을 농도별로 2.5%(TPA group), 5%(TPB gorup)의 수준으로 공급하였을 시 항산화계 및 산화적 손상에 미치는 영향을 관찰하였다. SOD 활성을 간조직에서 관찰한 결과, 울금 분말을 공급한 군에서 HF군에 비해 SOD 활성이 증가하였으며, 특히 TPB군에서는 유의적으로 증가하였다. GPx 활성은 정상군에 비해 HF군에서 감소되었으나, 울금 분말을 공급한 군에서 HF군에 비해 GPx 활성이 유의적으로 증가되었다. Catalase를 관찰한 결과는 정상군에 비해 고지방 고콜레스테롤군에서 감소되었으며 울금 분말을 공급한 군에서는 증가되었다. Superoxide radical 함량을 간조직의 microsome에서는 정상군에 비해 HF군에서 증가되었으나 울금 분말을 공급한 모든 군에서 감소되었다. 간조직의 mitochondria에서는 정상군에 비해 HF군에서 유의적으로 증가하였고, 울금 분말을 공급한 모든 군에서는 감소하였다. 특히 TPB군에서는 유의적으로 감소하는 것을 볼 수 있었다. 간조직의 mitochondria에서 $H_2O_2$의 함량은 정상군에 비해 HF군에서 유의적으로 증가되었다. 울금 분말을 공급한 모든 군에서는 HF군에 비해 감소되었으며 정상군 수준으로 감소되었다. 간조직의 cytosol에서는 정상군에 비해 HF군에서 유의적으로 증가되었으나 울금 분말을 공급한 군에서는 감소되었으며 정상군 수준으로 감소되었다. 간조직의 산화단백질의 생성지표인 carbonyl 가 함량을 mitochondria에서 측정한 결과 정상군에 비해 고지방 고콜레스테롤군에서 증가되었으며, HF군에 비해 울금 분말을 공급한 모든 군에서 유의적으로 감소하는 경향을 나타내었다. 간조직에서의 TBARS를 측정한 결과 HF군에 비해 울금 분말을 공급한 모든 군에서 유의적으로 감소하는 경향을 나타내었다. 이러한 결과로부터 국내산 울금은 고콜레스테롤 식이 흰쥐에서 항산화계를 강화시켜 조직의 산화적 손상을 감소시키는 항산화 효과가 있음이 규명되었다.

Keywords

References

  1. Halliwell B, Gutteridge JMC. 1996. Free radicals, ageing, and disease. In Free Radicals in Biology and Medicine. Clarendon Press, London, UK. p 416.
  2. Mantha SV, Kalra J, Prasad K. 1996. Effects of probucol on hyper cholesterolemia-induced changes in antioxidant enzymes. Life Sci 58: 503-509. https://doi.org/10.1016/0024-3205(95)02315-1
  3. Del Boccio G, Lapenna K, Porreca E, Pennelli A, Savini F, Feliciani P, Ricci G, Cuccurullo F. 1990. Aortic antioxidant defence mechanisms: time-related changes in cholesterolfed rabbits. Atheroscleosis 81: 127-135. https://doi.org/10.1016/0021-9150(90)90019-F
  4. Lee JM, Choi SW, Cho SH, Rhee SJ. 2003. Effect of seeds extract of Paeonia lactiflora on antioxidative system and lipid peroxidation of liver in rats fed high-cholesterol diet. Korean J Nutr 36: 793-800.
  5. Wokozawa T, Nakagawa T, Kitani K. 2002. Antioxidative activity of green tea polyphenol in cholesterol-fet rats. J Agric Food Chem 50: 3549-3552. https://doi.org/10.1021/jf020029h
  6. Trackshel G, Maines MD. 1988. Characterization of glutathione S-transferase in rat kidney. Biochem J 252: 127-136. https://doi.org/10.1042/bj2520127
  7. Jang JR, Hwang SY, Lim SY. 2010. Effects of extracts from dried yam on antioxidant and growth of human cancer cell lines. J Life Sci 20: 1365-1372. https://doi.org/10.5352/JLS.2010.20.9.1365
  8. Halliwell B, Gutteridge JMC. 1999. Antioxidant defenses. In Free Radicals in Biology and Medicine. 3rd ed. Oxford University Press, Oxford, UK. p 105-245.
  9. Halliwell B, Aruoma OJ. 1991. DNA damage by oxygenderived species. FEBS Letters 281: 9-19. https://doi.org/10.1016/0014-5793(91)80347-6
  10. Lee JM. 1997. Protective effect of Ganoderma lucidum and Panax ginseng C.A. Meyer on oxidative damage. MS Thesis. Seoul National University, Seoul, Korea.
  11. Oh H, Park H, Ju MS, Jung SY, Oh MS. 2010. Comparative study of anti-oxidant and anti-inflammatory activities between Curcumae longae Radix and Curcumae longae Rhizoma. Kor J Herbology 25: 83-91.
  12. Geoffrey NR, Amitahb C, Muraleedharan GN. 1998. Nobel bioactivities of Curcuma longa constituents. J Nat Prod 61: 542-545. https://doi.org/10.1021/np970459f
  13. Andrew MA, Matthew SM. 2000. Isolation of curcuma from tumeric. J Chem Educ 77: 359-362. https://doi.org/10.1021/ed077p359
  14. An BJ, Lee JT, Park TS, Pyeon JR, Bae JH, Song MA, Beak EJ, Park JM, Son JH, Lee CE, Cho IK. 2006. Antioxidant activity and whitening effect of extraction condition in Curcuma longa L. Korean J Medicinal Crop Sci 14: 168-172.
  15. Ryn GY, No KH, Ryu SR, Yang HS. 2005. Study of separation and analysis method an effective component from UIGeum (Curcuma longa) and a contained curcumin as product of national and partial region cultures. Appl Chem 9: 57-60.
  16. Ammon HRT, Wahl MA. 1991. Pharmacology of Curcumin longa. Planta Med 57: 1-7. https://doi.org/10.1055/s-2006-960004
  17. Kang WS, Kim SH, Park EJ, Yoon KR. 1998. Antioxidative property of turmeric (Curcumae Rhizoma) ethanol extract. Korean J Food Sci Technol 30: 266-271.
  18. Song EK, Cho H, Kim JS, Kim NY, An NH, Kim JA, Lee SH, Kim YC. 2001. Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa. Planta Med 67: 876-877. https://doi.org/10.1055/s-2001-18860
  19. Masuda T, Isobe T, Jito A, Nakatani N. 1992. Antioxidative curcuminoids from rhizomes of Curcuma xanthorrhiza. J Phytochem 31: 3645-3649. https://doi.org/10.1016/0031-9422(92)83748-N
  20. Russell LR. 1988. High performance liquid chromatographic separation and spectral characterization of the pigments in tumeric and anatto. J Food Sci 53: 1823-1826. https://doi.org/10.1111/j.1365-2621.1988.tb07851.x
  21. Reitman S, Frankel S. 1957. A colorimetric method for the determination of serum blutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Pathol 28: 56-63. https://doi.org/10.1093/ajcp/28.1.56
  22. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the antioxidation of pyrogallol and a cinvenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  23. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71: 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  24. Abei H, Wyss SR, Scherz B, Skvaril F. 1974. Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem 48: 137-145. https://doi.org/10.1111/j.1432-1033.1974.tb03751.x
  25. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione Stransferase; the first enzymatic steps in mercapturic acid formation. J Biol Chem 249: 7130-7139
  26. Gay C, Gebicki JM. 2000. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 284: 217-220. https://doi.org/10.1006/abio.2000.4696
  27. Azzi A, Montecucco C, Richter C. 1975. The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membrane. Biochem Biophys Res Commun 65: 597-603. https://doi.org/10.1016/S0006-291X(75)80188-4
  28. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn B, Shaliel S, Stadtment ER. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186: 464-478. https://doi.org/10.1016/0076-6879(90)86141-H
  29. Uchiyama M, Mihara M. 1978. Determination of malondialdehyde precursor in tissues by TBA test. Anal Biochem 86: 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  31. Sreel RGD, Torrie JH. 1990. Principles and procedures of statistics. Mcgrow Hill, New York, NY, USA.
  32. Fu Y, Zheng S, Lin J, Ryerse J, Chen A. 2008. Curcumin protects the rat liver from CCI4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Mol Pharmacol 73: 339-409.
  33. Jones DP, Eklow L, Orrenius S. 1981. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contribution of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch Biochem Biophys 210: 505-516. https://doi.org/10.1016/0003-9861(81)90215-0
  34. Liju VB, Jeena K, Kuttan R. 2011. An evaluation of antioxidant, anti-inflammatory, and antinociceptive activities of essential oil from Curcuma longa. L. Indian J Pharmacol 43: 526-531. https://doi.org/10.4103/0253-7613.84961
  35. Oh HI, Park HB, Ju MS, Jung SY, Oh MS. 2010. Comparative study of anti-oxidant and anti-inflammatory activities between Curcumae longae Radix and Curcumae longae Rhizoma. Korean J Herbology 25: 83-91.
  36. Jacoby WB. 1978. The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol 46: 383-414.
  37. Adaramoye OA, Nwosu IO, Farombi EO. 2012. Sub-acute effect of NG-nitro-I arginine methyl-ester (L-NAME) on biochemical indices in rats: Protective effects of Kolaviron and extract of Curcuma longa L. Pharmacognosy Res 4: 127-133. https://doi.org/10.4103/0974-8490.99071
  38. An BJ, Lee JY, Park TS, Pyeon JR, Bae HJ, Song MA, Baek EJ, Park JM, Con JH, Lee CE, Choi KI. 2006. Antioxidant activity and whitening effect of extraction conditions in Curcuma longa L. Korean J Medicinal Crop Sci 14: 168-172.
  39. Bus JS, Aust SD, Gibson JE. 1975. Lipid peroxidation: a possible mechanism for paraquat toxicity. Res Commun Chem Pathol Pharmacol 11: 31-38.
  40. Kim KB, Yoo KH, Park HY, Jeong JM. 2006. Anti-oxidative activities of commercial edible plant extracts distributed in Korea. J Korean Soc Appl Biol Chem 49: 328-333.
  41. Plaa GL, Witscri H. 1976. Chemicals, drugs and lipid peroxidation. Annu Rev Pharmacol Toxicol 16: 125-141. https://doi.org/10.1146/annurev.pa.16.040176.001013
  42. Del Boccio GLD, Porreca EPA, Savini R, Feliciani P, Ricci G, Cuccurullo F. 1990. Aortic antioxidant defence mechanism time-related change in cholesterol-fed rabbits. Atherosclerosis 84: 127-135.
  43. Mantha SV, Kalra J, Prasad K. 1996. Effects of probucol on hypercholesterolemia-induced changes in antioxidant enzymes. Life Sci 58: 503-509. https://doi.org/10.1016/0024-3205(95)02315-1
  44. Akira A, Kiyotake N, Teruo N. 1999. Antioxidative effects of turmeric, rosemary and capsicum extracts on membrane phospholipid peroxidation and liver lipid metabolism in mice. Biosci Biotechnol Biochem 63: 2118-2122. https://doi.org/10.1271/bbb.63.2118

Cited by

  1. Effect of Saekso 2 Corn Kernels and Cobs Extracts on Antioxidant Activity in Rats Fed High Fat-cholesterol Diet vol.31, pp.6, 2016, https://doi.org/10.13103/JFHS.2016.31.6.399
  2. Anti-obesity Effects of Curcuma longa L. Extracts through Inhibiting Adipogenic Transcription Factors vol.15, pp.2, 2017, https://doi.org/10.20402/ajbc.2016.0127
  3. Acute Oral Toxicity Study of Ethanol Extract of Curcuma longa L. in Mice vol.24, pp.10, 2014, https://doi.org/10.5352/JLS.2014.24.10.1132
  4. Antioxidant and antiapoptotic effects of pine needle powder ingestion and endurance training in high cholesterol-fed rats vol.18, pp.3, 2014, https://doi.org/10.5717/jenb.2014.18.3.301
  5. In Vitro Hepatoprotective Effects of Fermented Curcuma longa L. by Aspergillus oryzae against Alcohol-Induced Oxidative Stress vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.812
  6. The Effects of Artemisiae Iwayomogii Herba, Curcumae Radix, and Aurantii Fructus Immaturus Complex Extract (ACA) on Dyslipidemia-related Factor Expression and Anti-oxidation in HepG2 Cells vol.38, pp.3, 2017, https://doi.org/10.22246/jikm.2017.38.3.367
  7. Effects of Dendropanax morbifera Leaf Extracts on Lipid Profiles in Mice Fed a High-Fat and High-Cholesterol Diet vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.641
  8. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production vol.6, 2017, https://doi.org/10.1017/jns.2016.43
  9. Effects of Salvia plebeia R. Br. on Antioxidative Enzyme Activities and Oxidative Damage in Rats Fed High-Fat and High-Cholesterol Diets vol.33, pp.4, 2018, https://doi.org/10.13103/JFHS.2018.33.4.316
  10. on human epidermal keratinocytes in vitro and skin conditions in healthy participants: A randomized, double-blind, placebo-controlled trial pp.14732130, 2019, https://doi.org/10.1111/jocd.12890
  11. HepG2 cell을 이용한 한인진, 울금, 나복자 복합물(ACR)의 이상지질혈증 관련 유전자 발현 억제 및 항산화 효능 평가 vol.38, pp.3, 2013, https://doi.org/10.13048/jkm.17024
  12. 진도산 울금(Curcuma longa L.) 추출물의 총 플라보노이드 함량 및 항산화 활성 vol.28, pp.4, 2013, https://doi.org/10.5322/jesi.2019.28.4.393
  13. 울금(Curcuma longa L.) 섭취가 당뇨성 흰쥐의 혈당 및 지질대사 기능 개선에 미치는 영향 vol.28, pp.5, 2013, https://doi.org/10.5322/jesi.2019.28.5.485
  14. 오가피청혈플러스가 NF-κB 및 MAPKs 신호전달체계와 혈관부착인자 등에 미치는 영향 vol.41, pp.6, 2013, https://doi.org/10.22246/jikm.2020.41.6.967
  15. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of CURCUMA LONGA and curcumin, an updated and comprehensive review vol.47, pp.3, 2013, https://doi.org/10.1002/biof.1716
  16. In Vivo Evaluation of Dendropanax morbifera Leaf Extract for Anti-Obesity and Cholesterol-Lowering Activity in Mice vol.13, pp.5, 2013, https://doi.org/10.3390/nu13051424
  17. The Effect of Yulmu (Coix lacryma-jobi L.)-Sunsik on Obesity and Hyperlipidemia in Mice Fed High-Fat Diet vol.50, pp.7, 2021, https://doi.org/10.3746/jkfn.2021.50.7.664