• Title/Summary/Keyword: hydrogen peroxide$(H_2O_2)$

Search Result 925, Processing Time 0.028 seconds

Flavonoid Component Changes and Antioxidant Activities of Fermented Citrus grandis Osbeck Peel (당유자 과피 발효물의 플라보노이드 성분 변화 및 항산화 활성)

  • Hyon, Jae-Seok;Kang, Sung-Myung;Han, Sang-Won;Kang, Min-Cheol;Oh, Myung-Cheol;Oh, Chang-Kyung;Kim, Dong-Woo;Jeon, You-Jin;Kim, Soo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1310-1316
    • /
    • 2009
  • In this study, we investigated the change of antioxidant activity and flavonoid contents by fermentation of Citrus grandis Osbeck peel (CGP) using the Saccharomyces cerevisiae (KCCM35053), comparing to unfermented CGP. Total flavonoid content in the fermented Citrus grandis Osbeck peel (FCGP) was 3,768 g/100 g sample and higher than that of CGP. The antioxidant activities of FCGP was determined by DPPH, hydroxyl, alkyl radicals, and hydrogen peroxide scavenging assays. FCGP showed higher activities than CGP in all scavenging assays. The $IC_{50}$ values of FCGP were 261.3 ${\mu}g$/mL for DPPH; 1,474 ${\mu}g$/mL for hydroxyl; 90.9 ${\mu}g$/mL for alkyl and 1,195 ${\mu}g$/mL for $H_2O_2$ in respective scavenging assays. Flavonoid compositions of both samples were determined by liquid chromatography/mass spectrometry (LC/MS). In the spectrum FCGP was similar to CGP in the contents of neohesperidin, naringin and an unknown No. 7 compound, but some unknown compounds (No. 1, 2, 4, 5, 6) were higher than CGP in each flavonoid contents. Therefore, the fermentation of CGP could increase the contents of unknown compound and improved antioxidant activities.

High Throughput-compatible Screening of Anti-oxidative Substances by Insect Extract Library (약용곤충추출물 라이브러리를 이용한 항산화 활성의 초고속 검색)

  • Park, Ja-Young;Heo, Jin-Chul;An, Sang-Mi;Yun, Eun-Young;Han, Sang-Mi;Hwang, Jae-Sam;Kang, Seok-Woo;Yun, Chi-Young;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.482-488
    • /
    • 2005
  • Oxidant stress is well-known for a pivotal parameter related to neuro-inflammatory diseases including Alzheimer's disease, Parkinson's disease, and ALS (Lou Gehrig's disease). In order to effectively screen for anti-inflammatory agents, we first established the infrastructure of high throughput screening for anti-oxidant agents from medicinal insect library extracted with water, methanol, ethanol, and dimethyl sulfoxide. By the screening system, we found that Tenodera angustipennis Saussure, Pyrocoela rupa Olivier and Papilio maackii Mntris had strong anti-oxidant activity. Moreover, Tenodera angustipennis Saussure and Tenodera aridifolia (Stoll) exhibited protection effects of cellular damage by treatment of an oxidant hydrogen peroxide. Together, the results suggest that some selected hits could be a potential agent against neuro-inflammation, although the in vivo studies should be clearly tested.

Biochemical Changes in Brassica Seedlings Due to Uniconazole Treatment (Brassica속 작물 유묘에서 생장억제제 Uniconazole 처리에 따른 생화학적 변화)

  • Park, Woo-Churl;Nam, Min-Hee
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.202-206
    • /
    • 1995
  • In order to obtain the basic data for clarifing the mechanism of cold tolerance in crops, we analyzed various biochemical changes according to the Uniconazole treatment in Brassica seedling. Peroxidase activity in the root fraction of Brassica seedling was about 3 to 4 times higher than that in hypocotyl fraction, while catalase activity in those fractions showed opposite trend to the peroxidase activity. The content of hydrogen peroxide in root fraction was higher than that of hypocotyl fraction as being a reciprocal proportion with catalase activity. Especially in all fractions, peroxidase· activity of 'Sandongchae' (B. campestris) seedling, known as cold tolerant, was two-fold higher than that of cold sensitive rape(B. napus). The elongation rate of hypocotyl after germination was faster in B. napus than in B. campestris. The application of Uniconazole at 0.3 to 1.0 ppm to B. napus suppressed 43 to 46% of hypocotyl elongation and increased 65 to 73% of peroxidase activity in hypocotyl fraction. The shortening rate of hypocotyl length due to Uniconazole treatment was positively correlated with the increasing rate of peroxidase activity in hypocotyl fraction. Superoxide dismutase was not induced upon Uniconazole treatment and has only 3 isozymes in any fractions. Its activity was observed in the order of cotyledon>root>hypocotyl fraction.

  • PDF

The Expression of DNA Polymerase-$\beta$ and DNA Damage in Jurkat Cells Exposed to Hydrogen Peroxide under Hyperbaric Pressure

  • Sul, Dong-Geun;Oh, Sang-Nam;Lee, Eun-Il
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Long term exposure of Jurkat cells to 2 ATA pressure resulted in the inhibition of cell growth. Under a 2 ATA pressure, the morphological changes in the cells were visualized by electron microscopy. The cells exhibited significant inhibitory responses after three passages. However, short-term exposure study was carried out, 2 ATA pressure may have beneficial effects. The Jurkat cells were exposed to $H_2O_2$ (25 and $50{\mu}M$) in order to induce DNA damage, and then incubated under at either normal pressure or 2 ATA for 1 or 2 hours in order to recover the DNA damage. The extent of DNA damage was determined via Comet assay. More recovery from DNA damage was observed at 2 ATA than at normal pressure. The activity of the DNA repair enzymes, DNA polymerase-$\beta$, was also evaluated at both normal pressure and 2 ATA. The activity of DNA polymerase-$\beta$ was observed to have increased significantly at the 2 ATA than at normal pressure. In conclusion, the effects of hyperbaric pressure from 1 ATA to 2 ATA on biochemical systems can be either beneficial or harmful. Long term exposure to hyperbaric pressure clearly inhibited cell proliferation and caused genotoxic effects, but short-term exposure to hyperbaric pressure proved to be beneficial in terms of bolstering the DNA repair system. The results of the present study have clinical therapeutic application, and might prove to be an useful tool in the study of genotoxicity in the future.

Antioxidant Effect of Hederagenin 3-O-b-D-Glucopyranosyl(1→3)-a-L-Rhamnopyranosyl(1→2)-a-L-Arabinopyranoside (HDL) Isolated from Root Bark of Ulmus davidiana (유근피로부터 분리한 hederagenin 3-O-b-D-glucopyranosyl(1→3)-a-L-rhamnopyranosyl(1→2)-a-L-arabinopyranoside (HDL)의 항산화 효과)

  • Bong, Jin-Gu;Park, Yoon-Yub
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.281-291
    • /
    • 2010
  • We investigated the antioxidant effects of hederagenin 3-O-b-D-glucopyranosyl($1{\rightarrow}3$)-a-L-rhamnopyranosyl($1{\rightarrow}2$)-a-L-arabinopyranoside (HDL) isolated from root bark of Ulmus davidiana on the activity of enzymes related to reactive oxygen species (ROS) in human osteosarcoma U2OS cells. Cobalt chloride ($CoCl_2$), a transition metal, was used as an inducer of oxidative stress, generating hydrogen peroxide ($H_2O_2$) via increasing xanthine oxidase (XO) activity. The increased levels of $H_2O_2$, XO, ferritin, and ferritin iron by $CoCl_2$ were diminished effectively by co-treatment with HDL in U2OS cells. Furthermore, decreased levels of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) by $CoCl_2$ were highly increased by co-treatment with HDL in U2OS cells; however, the levels of glutathione peroxidase (GPx) did not change. The increased contents of TBARS related to lipid peroxidation were significantly reduced by HDL in U2OS cells. The concentration of GSH changed in a pattern that went against regulated TBARS by $CoCl_2$ and HDL. We examined the expression of p53, $p21^{CIP1/WAF1}$, and $p27^{KIP1}$ proteins related to oxidative stress and cell cycle regulation. As a result, the expression of $p27^{KIP1}$ modulated by $CoCl_2$ was not changed by HDL. However, the expression of p53 and $p21^{CIP1/WAF}$ increased by $CoCl_2$ was reduced by HDL in U2OS cells. Together with alteration of p53 and $p21^{CIP1/WAF1}$ proteins, the accumulated cells at G1 phase by $CoCl_2$ was decreased by HDL in U2OS cells. Our data suggests that HDL inhibits $CoCl_2$-generated ROS in U2OS cells, providing potentially new antioxidant compounds that are isolated from natural products.

Study on Aluminum Frame Surface Cleaning Process for Photomask Pellicle Fabrication (포토마스크 펠리클 제조를 위한 Aluminum Frame 표면 세정공정 연구)

  • Kim, Hyun-Tae;Kim, Hyang-Ran;Kim, Min-Su;Lee, Jun;Jang, Sung-Hae;Choi, In-Chan;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.462-467
    • /
    • 2015
  • Pellicle is defined as a thin transparent film stretched over an aluminum (Al) frame that is glued on one side of a photomask. As semiconductor devices are pursuing higher levels of integration and higher resolution patterns, the cleaning of the Al flame surface is becoming a critical step because the contaminants on the Al flame can cause lithography exposure defects on the wafers. In order to remove these contaminants from the Al frame, a highly concentrated nitric acid ($HNO_3$) solution is used. However, it is difficult to fully remove them, which results in an increase in the Al surface roughness. In this paper, the pellicle frame cleaning is investigated using various cleaning solutions. When the mixture of sulfuric acid ($H_2SO_4$), hydrofluoric acid (HF), hydrogen peroxide ($H_2O_2$), and deionized water with ultrasonic is used, a high cleaning efficiency is achieved without $HNO_3$. Thus, this cleaning process is suitable for Al frame cleaning and it can also reduce the use of chemicals.

Electrochemical Behavior of Redox Proteins Immobilized on Nafion-Riboflavin Modified Gold Electrode

  • Rezaei-Zarchi, S.;Saboury, A.A.;Hong, J.;Norouzi, P.;Moghaddam, A.B.;Ghourchian, H.;Ganjali, M.R.;Moosavi-Movahedi, A.A.;Javed, A.;Mohammadian, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2266-2270
    • /
    • 2007
  • Electron transfer of a redox protein at a bare gold electrode is too slow to observe the redox peaks. A novel Nafion-riboflavin functional membrane was constructed during this study and electron transfer of cytochrome c, superoxide dismutase, and hemoglobin were carried out on the functional membrane-modified gold electrode with good stability and repeatability. The immobilized protein-modified electrodes showed quasireversible electrochemical redox behaviors with formal potentials of 0.150, 0.175, and 0.202 V versus Ag/AgCl for the cytochrome c, superoxide dismutase and hemoglobin, respectively. Whole experiment was carried out in the 50 mM MOPS buffer solution with pH 6.0 at 25 oC. For the immobilized protein, the cathodic transfer coefficients were 0.67, 0.68 and 0.67 and electron transfer-rate constants were evaluated to be 2.25, 2.23 and 2.5 s?1, respectively. Hydrogen peroxide concentration was measured by the peroxidase activity of hemoglobin and our experiment revealed that the enzyme was fully functional while immobilized on the Nafion-riboflavin membrane.

Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings

  • Goh, Chang-Hyo;Satoh, Kouji;Kikuchi, Shoshi;Kim, Seong-Cheol;Ko, Suk-Min;Kang, Hong-Gyu;Jeon, Jong-Seong;Kim, Cheol-Soo;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.281-291
    • /
    • 2010
  • The rice CHLH gene encodes the $Mg^{2+}$-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stressresponsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPXl, OsRACl, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.

Biomimetic Copper Complex Containing Polymer Modified Electrode for Electrocatalytic Reduction of Oxygen

  • Saravanakumar, D.;Nagarale, Rajaram Krishna;Jirimali, Harish Chandra;Lee, Jong Myung;Song, Jieun;Lee, Junghyun;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.298-305
    • /
    • 2016
  • The development of non-precious metal based electrocatalysts is highly desired for the oxygen reduction reaction (ORR) as alternates to noble metal based ORR electrocatalysts. Herein, we report mononulcear copper(II) complex $[CuLbpy]ClO_4$ (L=4-[(2-hydroxyphenylimino)methyl]benzoic acid) containing poly(allylamine.HCl) polymer (PAlACuLbpy) as an electrocatalyst for oxygen reduction reaction (ORR). PAlACuLbpy was mixed with poly(acrylic acid) and tetraethylortho silicate to prepare a composite and then deposited on the screen printed electrode surface. The modified electrode (PAlACuLbpy/PCE) is highly stable and showed a quasi-reversible redox behavior with $E_{1/2}=-0.2V$ vs. Ag/AgCl(3 M KCl) in 0.1 M phosphate buffer at pH 7 under argon atmosphere. PAlACuLbpy/PCE exhibited a remarkable ORR activity with an onset potential of -0.1 V vs Ag/AgCl in 0.1 M PB (pH 7) in the presence of oxygen. The kinetics for ORR was studied by rotating disk voltammetry in neutral aqueous medium and the results indicated that the number of electrons involving in the ORR is four and the conversion products are water and hydrogen peroxide.

Effect of Ozone Concentration on AOP Efficiency of Secondary Effluent from Pig Slurry Purification System (오존 접촉농도가 양돈슬러리 2차 처리수의 고도처리 효율에 미치는 영향)

  • Jeong, K.H.;Jeon, S.K.;Ryu, S.H.;Kim, J.H.;Kwag, J.H.;Ann, H.K.;Jeong, M.S.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With an increasing livestock population, animal manure production has been steadily increasing in Korea. This trend has forced farmers to spend more money for animal manure treatment in their farm. Therefore, research utilizing animal manure as a renewable resources has become increasingly important. The purpose of this study was to develop a stable advanced wastewater treatment system can be applied to conventional animal wastewater treatment processes and evaluate its contribution to reduce effluent discharge volume by recycling as flushing water. AOP (advanced oxidation process) process improved wastewater treatment efficiency in terms of color, suspended solids (SS) and chemical oxygen demand (COD). Due to the addition of Hydrogen peroxide ($H_2O_2$), pathogens, Salmonella and E. coli, reduction was accomplished. To enhance ozone treatment effect, three levels of ozone test on secondary effluent of pig slurry purification system were conducted. At the level of 5 g/hr, 6.7 g/hr and 8.4 g/hr color of secondary effluent of pig slurry purification system were decreased from 2,433 to 2,199, 2,433 to 1,980 and 2,433 to 243, respectively.