• Title/Summary/Keyword: hydrogen peroxide$(H_2O_2)$

Search Result 925, Processing Time 0.023 seconds

Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

  • Kim, Jae-Hwan;Park, Eun-Young;Ha, Ho-Kyung;Jo, Chan-Mi;Lee, Won-Jae;Lee, Sung Sill;Kim, Jin Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.288-298
    • /
    • 2016
  • Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than $50{\mu}M$. Nanoparticles prepared from ${\beta}$-lactoglobulin (${\beta}$-lg) were successfully developed. The ${\beta}$-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. Fluorescein isothiocynate-conjugated ${\beta}$-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored $H_2O_2$-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.

Protective Effect of Nitric Oxide against Oxidative Stress under UV-B Radiation in Maize Leaves (UV-B 조사시 옥수수 잎의 산화적 스트레스에 대한 Nitric Oxide의 보호효과)

  • Kim, Tae-Yun;Jo, Myung-Hwan;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1323-1334
    • /
    • 2010
  • The effect of nitric oxide (NO) on antioxidant system and protective mechanism against oxidative stress under UV-B radiation was investigated in leaves of maize (Zea mays L.) seedlings during 3 days growth period. UV-B irradiation caused a decrease of leaf biomass including leaf length, width and weight during growth. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated UV-B stress induced growth suppression. NO donor permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under UV-B stress, suggesting that NO has protective effect on chloroplast membrane in maize leaves. Flavonoids and anthocyanin, UV-B absorbing compounds, were significantly accumulated in the maize leaves upon UV-B exposure. Moreover, the increase of these compounds was intensified in the NO treated seedlings. UV-B treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in maize leaves, while NO donor prevented UV-B induced increase in the contents of malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that NO serves as antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, catalase (CAT) and ascorbate peroxidase (APX) in maize leaves in the presence of NO donor under UV-B stress were higher than those under UV-B stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3- oxide (PTIO), a specific NO scavenger, to the maize leaves arrested NO donor mediated protective effect on leaf growth, photosynthetic pigment and free radical scavenging activity. However, PTIO had little effect on maize leaves under UV-B stress compared with that of UV-B stress alone. $N^{\omega}$-nitro-L-arginine (LNNA), an inhibitor of nitric oxide synthase (NOS), significantly increased $H_2O_2$ and MDA accumulation and decreased antioxidant enzyme activities in maize leaves under UV-B stress. This demonstrates that NOS inhibitor LNNA has opposite effects on oxidative resistance. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative stress induced by UV-B radiation and thus confer UV-B tolerance.

Purification and Characterization of Glutathione Peroxidase Isolated from Rat Erythrocyte and Histochemical Study of its Localization in Liver of White Rat (흰쥐 적혈구에 있는 Glutathione Peroxidase의 순화 및 성질과 간에서의 용작부위에 대한 조직화학적 연구)

  • 최임순;최춘근
    • The Korean Journal of Zoology
    • /
    • v.29 no.2
    • /
    • pp.141-158
    • /
    • 1986
  • A glutathione peroxidase from white rat (Wistar strain)erythrocytes was partially purified and characterized. In addition, localization of this enzyme in the liver was studied by histochemical method. A glutathione peroxidase was purified approximately 33.5-folds by ammonium sulfate precipitation, Sephadex filtration column and DEAE-Sephadex column chromatography. The optimum temperature of the crude glutathione peroxidase was $40^\\circC$, and the optimum pH was 7.5. This crude glutathione peroxidase was most stable at $30^\\circC$ and the values of Km and Vmax were calculated to be 8.5mM and 15.6 $\\mu$moles/min for glutathione, and 40 $\\mu$M and 10.5 $\\mu$moles/min for hydrogen peroxide, respectively. The molecular weight of this enzyme was estimated by Sephadex G-200 gel filtration to be approximately 90, 000. By electron microscopic examination, histochemical reaction products were microbodies that were prominent in the peripheral parts of the lobule. The reaction products exhibited round shapes, the diameter of which varied $0.2\\sim0.7 \\muM$ and their boundary membranes were not distint.

  • PDF

Effects of Pyruvate and Taurine for In Vitro Preservation in Boar Semen and the Developmental Rates of Embryos Fertilized by Semen Treated with Antioxidant

  • Jang H. Y.;Cheong H. T.;Kim C. I.;Park C. K.;Yang B. K.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • Oxidative stress is one of the major causes of failure in in vitro storage of boar semen. Reactive oxygen species (ROS) are known to be important mediators of such stress. The present study examined the effects of pyruvate and taurine on sperm motility and expression of BAD, Cytochrome c, Caspase-3 and Cox-2 protein in in vitro storage of boar semen, and tested the effect of semen treated with antioxidant with or without hydrogen peroxide on the development of IVM/IVF porcine embryos. Semen samples were transported to the laboratory at $17^{\circ}C$ within 2 hr after collection and were treated with different concentration of pyruvate $(1\~10mM)$ and taurine $(25\~100mM)$ with or without 250uM $H_2O_2$ respectively. The supplementation of pyruvate and taurine increased sperm motility in boar semen during in vitro incubation at $37^{\circ}C$. Expression of apoptosis protein (BAD, cytochrome c, caspase-3 and cox-2) were reduced in the group of boar semen treated with pyruvate and taurine when compared to the other groups. The developmental rates of IVM/IVF porcine embryos fertilized by semen treated with pyruvate and taurine were significantly increased when compared to control (P<0.005). These results indicate that supplementation of pyruvate and taurine as antioxidants in boar semen extender can improve the semen quality and increase in vitro development of porcine IVM/IVF embryos when boar semen treated with antioxidants was used for in vitro fertilization.

The Preventive Inhibition of Chondroitin Sulfate Against the $CCl_4$-Induced Oxidative Stress of Subcellular Level

  • Lee, Jin-Young;Lee, Sang-Hun;Kim, Hee-Jin;Ha, Jong-Myung;Lee, Sang-Hyun;Lee, Jae-Hwa;Ha, Bae-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.340-345
    • /
    • 2004
  • Our work in this study was made in the microsomal fraction to evaluate the lipid peroxidation by measuring superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) and to elucidate the preventive role of CS in the $CCl_4$-induced oxidative stress. The excessive lipid peroxidation by free radicals derived from $CCl_4$ leads to the condition of oxidative stress which results in the accumulation of MDA. MDA is one of the end-products in the lipid peroxidation process and oxidative stress. MDA, lipid peroxide, produced in this oxidative stress causes various diseases related to aging and hepatotoxicity, etc. Normal cells have a number of enzymatic and nonenzymatic endogenous defense systems to protect themselves from reactive species. The enzymes in the defense systems, for example, are SOD, CAT, and GPx. They quickly eliminate reactive oxygen species (ROS) such as superoxide anion free radicalㆍO$^{[-10]}$ $_2$, hydrogen peroxide $H_2O$$_2$ and hydroxyl free radicalㆍOH. CS inhibited the accumulation of MDA and the deactivation of SOD, CAT and GPx in the dose-dependent and preventive manner. Our study suggests that CS might be a potential scavenger of free radicals in the oxidative stress originated from the lipid peroxidation of the liver cells of $CCl_4$-treated rats.

Generation of Chemically Active Species in Hybrid Gas-Liquid Discharges (기체-액체 혼합 방전에 의한 화학적 활성종 생성 특성)

  • Chung, Jae-Woo;Locke, Bruce R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.556-563
    • /
    • 2007
  • We carried out a laboratory scale experiment about the characteristics of chemically active species produced in hybrid gas-liquid discharges. The electrode configuration which had high voltage electrode in the gas phase and ground electrode in the liquid was utilized while high voltage electrode has been typically positioned in the liquid in other studies. Our electrode was configured in such a way as to increase the energy efficiency of chemical reactions by creating a higher electrical field strength and a narrower pulse width than the typical electrode configuration. The highest ozone concentration was obtained at 45 kV which was the medium value in operating voltages. The decrease of solution conductivity increased the resistance of liquid phase and the electric field strength through the gas phase, so ozone gene-ration rate was enhanced. The increase of voltage promoted the production rate of hydrogen peroxide by increasing the electric field strength. In a lower voltage, the increase of solution conductivity increased the degradation rate of $H_2O_2$, so the $H_2O_2$ generation rate decreased. On the other hand, the effects of UV radiation, shock waves etc. increased the $H_2O_2$ generation rate as the solution conductivity increased. A higher rate of $H_2O_2$ generation can be achieved by mixing argon to oxygen which generates a stronger and more stable discharges.

Protective Effects of Perilla frutescens Britt var. japonica Extracts from Oxidative Stress in Human HaCaT Keratinocytes (HaCaT 피부각질세포에서 들깻잎 추출물의 산화적 스트레스에 대한 항산화 효과)

  • Ji, Na;Song, Jia-Le;Kil, Jeung-Ha;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.161-167
    • /
    • 2013
  • The aim of this study was to investigate the protective effects of methanolic extract from perilla (Perilla frutescens Britt var. japonica) leaves (PLME) on oxidative injury from hydrogen peroxide ($H_2O_2$) in human HaCaT keratinoctyes. Cells were co-incubated with various concentrations (0~200 ${\mu}g/mL$) of PLME for 24 hr, and then exposed to $H_2O_2$ (500 ${\mu}M$) for 4 hr. $H_2O_2$ significantly decreased cell viability (p<0.05). However, PLME provided protection from $H_2O_2$-induced HaCaT cell oxidation in a dose-dependent manner. To further investigate the protective effects of PLME on $H_2O_2$-induced oxidative stress in HaCaT cells, the cellular levels of lipid peroxidation, and antioxidant enzymes (including superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and catalase (CAT)) were measured. PLME decreased cellular levels of lipid peroxidation, and also increased the activities of antioxidant enzymes. In addition, the antioxidant activities of PLME were also determined by DPPH and hydroxyl (${\cdot}OH$) radical scavenging assay, and major antioxidant compounds of PLME were measured by colorimetric methods. DPPH and ${\cdot}OH$ radical scavenging activities of PLME increased in a dose dependent manner and was similar to the DPPH scavenging activity of ascorbic acid at 50 ${\mu}g/mL$; however PLME activities were stronger than ascorbic acid (50 ${\mu}g/mL$) in the ${\cdot}OH$ scavenging assay. The amounts of antioxidant compounds, including total polyphenolics, total flavonoids, and total ascorbic acid from PLME were $52.2{\pm}1.1$ mg gallic acid (GAE)/g, $33.7{\pm}4.7$ mg rutin (RUE)/g, and $17.0{\pm}0.5$ mg ascorbic acid (AA)/g, respectively. These results suggest that PLME has a strong free radical-scavenging activity and a protective effect against $H_2O_2$-induced oxidative stress in the keratinocytes.

Effects of Kalopanax Pictus Extracts and Their Related Origin on Gastric Lesions (해동피 및 유사생약 추출물의 위 손상에 대한 효과)

  • Hwang, In Young;Hwang, Seon A;Jeong, Choon Sik
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • Kalopanax pictus has pharmacologically anti-inflammatory and analgesic effect and is known to respond to treatment of backache, knee pain and etc. In this study, we investigated the effects on gastric lesions of Kalopanax pictus both from Korea (KPK) and China (KPC) compared with their related origin, Znthoxylum ailanthoide both from Korea (ZAK) and China (ZAC), and Korean Bombax malabaricum (BMK). In preliminary screening, KPK and KPC shown effective inhibition of HCI EtOH-induced gastritis in rats. To elucidate their protective effects on gastric lesions, we assessed inhibition of H. pylori colonization, 2,2-diphenyl-1-picrylhydrazyl(DPPH) radical scavenging activities, reducing power test, and inhibition of lipid peroxidation. KPK was the most effective from antioxidant assays. KPK also shown the inhibition of indomethacin-induced gastric ulcer in rats. Gastric secretion in rats, KPK reduced the secretion of gastric juice and total acidity and raised pH. Therefore, it is possible that KPK can be developed as health functional food and natural medicine. In addition, it can contribute to the standardization with objectivity and reliability for KPK through the criteria establishment of the precise origin of medicine, the prevention of indiscriminate distribution of imitation, and the rising rate of dependence on imports of medicinal herbs, and mixing prevention of low-quality goods.

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.