• 제목/요약/키워드: hydrogen ion concentration

Search Result 236, Processing Time 0.031 seconds

Optimal Condition of Operation Parameter for Livestock Carcass Leachate using Fenton Oxidation Process (가축 사체 매몰지 침출수 처리를 위한 Fenton 산화공정의 최적조건)

  • An, Sang-Woo;Jeong, Young-Cheol;Yoo, Ji-Young;Min, Jee-Eun;Lee, Si-Jin;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.26-35
    • /
    • 2013
  • Outbreak of animal infectious diseases such as foot-and-mouth disease, avian influenza are becoming prevalent worldwide. For prevent the further infection, tremendous numbers of the infected or culled stocks are buried around farm. This burial method can generate a wide range of detrimental components such as leachate, nutrient, salt, and pathogenic bacteria, consequently. In this study, for the stabilization of livestock carcasses leachate, advanced oxidation processes utilizing the Fenton reaction was investigated in lab-scale experiments for the treatment for $COD_{Cr}$ of livestock carcass leachate. $COD_{Cr}$ reduction by the Fenton oxidation was investigated response surface methodology using the Box-Begnken methods were applied to the experimental results. A central composite design was used to investigate the effects of the independent variables of pH ($x_1$), dosage of $FeCl_2{\cdot}4H_2O$ ($x_2$) and dosage of $H_2O_2$ ($x_3$) on the dependent variables $COD_{Cr}$ concentration ($y_1$). A 1 M NaOH and $H_2SO_4$ was using for pH control, $FeCl_2{\cdot}4H_2O$ was used as iron catalyst and NaOH was used for Fenton reaction. The optimal conditions for Fenton oxidation process were determined: pH, dosage of $FeCl_2{\cdot}4H_2O$ and dosage of $H_2O_2$ were 3, 0.6 g (0.0151 M) and 7 mL(0.259 M), respectively. Statistical results showed the order of significance of the independent variables to be pH > initial concentration of ferrous ion > initial concentration of hydrogen peroxide.

Effect of Corticosteroids on Renal Excretion of Lithium (Lithium 이온의 배설에 미치는 Corticosteroid의 영향)

  • Oh, Shin-Yul;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.229-235
    • /
    • 1986
  • Lithium salts are being used increasingly to treat patient with affective disorders, especially acute mania, or bipolar manic-depressive illness. For therapeutic effect the lithium content must be maintained at or above a particular level. Lithium poisoning due to overdosage may be seen occasionally, and its course is determined primarily by the rate of renal lithium elimination. A search is therefore indicated for procedures that could raise the lithium clearance. In a number of reports renal lithium excretion has been studied in relation to the excretion of water, sodium, potassium and hydrogen, but effects of sodium or water on the lithium excretion has not yet been clarified. Hence the present study was undertaken to investigate the effects of corticosteroid on the excretion of lithium ion. The female rat(Sprague-Dowley), weighing from 200 to 300g, was injected with 50mg/kg of lithium chloride intraperitoneally, and then injected with graded dosage of fludrocortisone and dexamethasone in each group. During the injected rats were incubated in metabolic cage, 24 hour urine of rats were collected. At 24 hours after injection, the rats were sacrificed with guillotin, the blood were collected. And then the concentratios of $Na^+$, $K^+$, $Li^+$ of collected urine and serum were checked by Flame photometer. The results are summarized as follows; 1. Fludrocortisone decreased the serum concentration of lithium and increased the urinary excretion of lithium. 2. In the group treated with low dose of dexamethasone(0.1mg/kg), the serum concentration of lithium was decreased and high dose of dexamethasone (1mg/kg) increased the urinary excretion of lithium. 3. Fludrocortisone increased the urinary $[Na^+]/[K^+]$ in serum and decreased $[Na^+]/[K^+]$ in urine, but opposite effects were occurred in dexamethasone. By above results, it may be concluded that corticosteroid increased the urinary excretion of lithium and decreased the serum concentration of lithium, but it seems to be there is no relationship between these effects of corticosteroid and of the renal $Na^+$ or $K^+$ transport.

  • PDF

Seasonal Monitoring of Residual Veterinary Antibiotics in Agricultural Soil, Surface Water and Sediment Adjacent to a Poultry Manure Composting Facility (계분 퇴비화 시설 인근 농경지 토양, 지표수 및 저질토의 계절별 잔류 항생물질 모니터링)

  • Lee, Sang-Soo;Kim, Sung-Chul;Kim, Kwon-Rae;Kwon, Oh-Kyung;Yang, Jae-E.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.273-281
    • /
    • 2010
  • Concentration of antibiotics including a tetracycline group (TCs) of tetracycline (TC), chlortetracycline (CTC), and oxytetracycline (OTC), a sulfonamide group (SAs) of sulfamethoxazole (SMX), sulfathiazole (STZ), and sulfamethazine (SMT), an ionophore group (IPs) of lasalocid (LSL), monensin (MNS), and salinomycin (SLM), and a macrolide group (MLs) of tylosin (TYL) was determined from samples collected from the agricultural soil, stream water, and sediment. For the agricultural soil samples, the concentration of TCs had the highest value among all tested antibiotic's groups due to its high accumulation rate on the surface soils. The lower concentrations of SAs in the agricultural soils may be resulted from its lower usage and lower distribution coefficient (Kd) compared to TCs. The concentration of TCs in stream water was significantly increased through June to September. It would be likely due to soil loss during an intensive rainfall event and a reduction of water level after the monsoon season. A significant amount of TCs in the sediment was also detected due to its accumulation from runoff, which occurred by complexation of divalent cations, ion exchange, and hydrogen bonding among humic acid molecules. To ensure environmental or human safety, continuous monitoring of antibiotics residues in surrounding ecosystems and systematic approach to the occurrence mechanism of antibiotic resistant bacteria are required.

Formation and Behavior of Sedimentary Inorganic Sulfides in Banweol Intertidal Flat, Kyoung-gi Bay, West Coast of Korea (황해 경기만 반월조간대 퇴적물 내의 황화물 형성과 행동에 관한 연구)

  • 김범수;이창복
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.229-240
    • /
    • 1993
  • This study investigated the behaviour of sulfur species after the early diegenetic reduction of sulfate from pore solution in an anoxic intertidal flat deposit in the Banweol area of Kyeong-gi Bay, west coast of Korea. A total of seven sediment cores were collected during 1990∼1992 and were analyzed for their solid-phase sulfur species (acid-volatile sulfur, element sulfur, pyrite sulfur) as well as for chemical components in the pore solution, such as sulfate, ammonium, hydrogen sulfide, phosphate and Fe ion. The pore water sulfate oncentration was found to decrease rapidly downward from the sediment surface, while that of hydrogen sulfide, ammonium and phosphate showed and increase. The dissolved iron concentration in pore water, on the other hand, was found high in the surface layer of sediment, but fell sharply below this layer. these characteristic profiles of pore water sulfide and iron concentrations suggest that some reaction occurs between dissolved iron and sulfide ions, leading to the formation of various sulfide minerals in the sedimentary phase. The amount of inorganic sulfur species in the sediment increased downward, and showed a maximum of up to 7.9 mg/g. among the three species analyzed, acid-volatile sulfur (AVS) was dominant comprising more than 50% of the total. The amount of pyrite sulfur was greater than that of element sulfur. This implies that the formation of pyrite was restricted in this environment. the limited amount of element sulfur in this deposit may have discouraged the active formation of pyrite.

  • PDF

Effects of Operating Parameters on Phenol Degradation by Pulsed Corona Discharges in Aqueous Solutions (펄스 코로나 방전에 의한 페놀 분해에 미치는 운전변수의 영향)

  • Chung, Jae-Woo;Moon, Ji-Hoon;Park, Eun-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.79-86
    • /
    • 2010
  • Effects of operating parameters such as applied voltage, solution conductivity, ferrous ion concentration, electrode material on phenol degradation by pulsed corona discharges were investigated in laboratory scale experiments. The increase of applied voltage enhanced the phenol degradation by generating more energetic electrons. The solution conductivity inversely affected phenol removal rate in the tested ranges because the increase of conductivity decreased the electric field strength through the liquid phase. The addition of ferrous sulfate promoted the phenol degradation through the OH radical production by the Fentonlike reactions between ferrous ion and hydrogen peroxide generated by pulsed corona discharges. Catechol and hydroquinone were detected as primary intermediates of phenol degradation and the decrease of pH and the increase of conductivity were observed probably due to the generation of organic acids. Almost all of the initial phenol was disappeared and 29% of total organic corbon (TOC) was removed in the condition of 0.5 mM of ferrous sulfate after approximately 230 kJ of discharge energy transferred to the reactor.

Adsorption Characteristics of Heavy Metals on Clay Minerals (점토광물에 의한 중금속 흡착 특성)

  • Moon, Jeong-Ho;Kim, Tae-Jin;Choi, Choong-Ho;Kim, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.704-712
    • /
    • 2006
  • This research was designed to investigate the removal of heavy metals, such as $Al^{3+}$, $Cu^{2+}$, $Mn^{2+}$, $Pb^{2+}$ and $Zn^{2+}$, by adsorption on clay minerals. Bentonite(Raw-Bentonite), $Ca^{2+}$ and $Na^+$ ion exchanged bentonite(Ca- and Na-Bentonite) and montmorillonite, such as KSF and K10 from Sigma Aldrich, were used as adsorbents. The component of five inorganic adsorbents was analyzed by XRF, and the concentration of metal ions was measured by ICP. The cation exchange capacity(CEC) and the particle charge of adsorbents were measured. The initial concentration range of metal ions was $10{\sim}100$ mg/L. From the experimental results, it was shown that the adsorption equilibrium was attained after $1{\sim}2$ hours. The maximum percentage removal of $Al^{3+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ on Na-Bentonite were more than 98% and that of $Mn^{2+}$ was 66%. $Al^{3+}$ was leached out from KSF with the higher concentration of hydrogen ion. Percentage removals of $Pb^{2+}$ and $Zn^{2+}$ on KSF were 88% and 59%, respectively. In general, the percentage removal of metal ions was decreased with the higher initial concentration of metal ions. The adsorption capacity of metal ions on Na-Bentonite was $1.3{\sim}19$ mg/g. Freundlich equation was used to fit the acquired experimental data. As the results, the adsorption capacity of metal ions was in the order of Na-Bentonite$\gg$Raw-Bentonite$\cong$K10>Ca-Bentonite>KSF. Freundlich constant, K of Na-Bentonite was the largest for metal ions. The order K of Na-Bentonite was Al>Cu>Pb>Zn>Mn, and the adsorption intensity(1/n) was determined to be $0.2{\sim}0.39$.

Electrokinetic Studies on Nylon and Wool/Acid Dye System (나일론과 양모/산성염료계에 대한 계면동전위적 연구)

  • 박병기;김진우;김찬영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • In past, dye diffusion and dyeing rate in fibers have been emphasized in dyeing phenomena. However, in the light of the properties of colloids in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Electrostatic bonding, hydrogen bonding and Van der Waals adsorption are common in dyeing as well as covalent bonding. Particularly, electrostatic bonding is premised on the existance of ionic radicals in fibers. The present study was aimed to clarify the electrokinetic phenomena of dyeing through the role of electric double layer by ion in amphoteric fibers with different ionic effects under different pH. Spectrophotometric analysis method was used to compare dyeing condition of surface, which can be detected by electrokinetic phenomena and the inner of fibers after deceleration of dyed fibers. Nylon and wool, the typical amphoteric fibers were dyed with monoazo acid dyes such as C.I. Acid Orange 20, and C.I. Acid Orange 10. Various combinations were prepared by combining pH, temperature and dye concentration, in order to generate streaming electric potential which were measured by microvolt meter and specific conductivity meter. The results were transformed to zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers. The amount of dyes of inner fibers were also measured by the Lambert-Beer’s law. The main results obtained are as follows. 1. By measuring zeta pontential, it was possible to detect the dyeing mechanism, surface charge density, surface dye amount and effective surface area concerning dye adsorption of the amphoteric fibers. 2. Zeta pontential increases in negative at low pH and high dye concentration in the process of dyeing. This implied that there existed ionic bond formation in the dyeing mechanism between acid dyes and amphoteric fibers. 3. Dibasic acid dye had little changing rate in zeta potential due to the difference in solubility of dye and in number of dissociated ions per dye molecule to bond with amino radicals of amphoteric fibers. The dye adsorption of mono basic acid dye was higher than that of dibasic acid dye. 4. The effective surface areas concerning dyeing were $6.3E+05\;cm^2/g$ in nylon, $1.6E+07\;cm^2/g$ in wool fiber being higher order of wool then nylon.

  • PDF

Removal of Ionic and Non-ionic Pharmaceuticals Using Granular Activated Carbon (입상활성탄을 이용한 이온성 및 비이온성 의약품의 제거)

  • Oh, Hee-Kyong;Kagawa, Chie;Urase, Taro;Simazaki, Dai;Kunikane, Shoichi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1192-1197
    • /
    • 2006
  • Adsorbability of ionic and nonionic pharmaceuticals was studied using granular activated carbon(GAC). In a batch adsorption test of muticomponent solution, 500 mg/L of GAC dose removed all target compounds between 94 and 98% at initial concentration of 10 ${\mu}g/L$. Adsorption of ionic pharmaceuticals increased as pH was lowered toward to pKa, however adsorption capacity of nonionic pharmaceuticals showed insignificant variation with the changing pH. The enhanced adsorption capacity of ionic pharmaceuticals at lower pH was attributed to the corresponding increase in the molecular form of ionic pharmaceuticals with carboxylic group at low pH. In addition, decrease of pH increased hydrogen ion concentration in the bulk solution and the protons bound to the available sites on the carbon enhanced the removal of the ionic pharmaceuticals from solution. After 40 days of continuous operation, GAC column showed the removal of target compounds were removed by $93{\sim}99%$ at 15 min of EBCT mainly due to adsorption mechanism of GAC. At shorter EBCT than 15 min, breakthrough of CA, IBP and GFZ occurred earlier than the other ionic and nonionic pharmaceuticals. effect of EBCT on adsorption of nonionic pharmaceuticals was greater than ionic ones. This study showed that persitent pharmaceuticals found in drinking water treatment could be effectively controlled by adsorption in GAC process.

Effect of pH Change on Vascular Smooth Muscle Contractility in Rat Superior Mesenteric Artery and Its Branches (쥐 상장간막 동맥과 그 분지에서 pH 변화가 혈관평활근 수축성에 미치는 영향)

  • Choi, Soo-Seung
    • Journal of Chest Surgery
    • /
    • v.43 no.4
    • /
    • pp.345-355
    • /
    • 2010
  • Background: Extracellular and intracellular pH ($pH_o$ and $pH_i$), which can be changed in various pathological conditions such as hypoxia, affects vascular contractility. To elucidate the mechanism to alter vascular contractility by pH, the effects of pH on reactivity to vasocontracting agents, intracellular $Ca^{2+}$ influx, and $Ca^{2+}$ sensitivity in vascular smooth muscle were examined. Material and Method: Isometric contractions in rat superior mesenteric arteries (SMA) were observed. Intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) was recorded by microfluorometer using Fura-2/acetoxylmethyl ester in muscle cells. $pH_o$ was increased from 7.4 to 7.8 or decreased to 6.9 or 6.4. $pH_i$ was decreased by applying $NH_4^+$ or propionic acid or modulated by changing $pH_o$ after increasing membrane permeability using $\beta$-escin. Result: Decreases in $pH_o$ from 7.4 to 6.9 or 6.4 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the right and significantly increased half maximal effective concentration (EC50) to NE or SE. Increase in $pH_o$ from 7.4 to 7.8 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the left and significantly reduced EC50 to NE or SE. NE increased $[Ca^{2+}]_i$ in cultured smooth muscle cells from SMA and the increased $[Ca^{2+}]_i$ was reduced by decreases in $pH_o$. NE-induced contraction was inhibited by $NH_4^+$, whereas the resting tension was increased by $NH_4^+$ or propionic acid. When the cell membrane of SMA was permeabilized using ${\beta}$-escin, SMA was contracted by increasing extracellular $Ca^{2+}$ concentration from 0 to $10{\mu}M$ and the magnitude of contraction was decreased by a decrease in $pH_o$ and vice versa. Conclusion: From these results, it can be concluded that a decrease in $pH_o$ might inhibit vascular contraction by reducing the reactivity of vascular smooth muscle to vasoactive agents, $Ca^{2+}$ influx and the sensitivity of vascular smooth muscle to $Ca^{2+}$.

Study on the Re-corrosion Characteristics of Corrosion Products by Weeping of Iron Artifacts (철제유물 Weeping에 따른 부식화합물의 재부식 특성 연구)

  • Park, Hyung-Ho;Lee, Hye-Youn;Lee, Jae-Sung;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2013
  • Excavated iron objects are preserved in stable condition through processes of conservation treatment because they are found in the form of various corrosion products. However, the conservation treatment leads to re-corrosion over time and accordingly, iron objects can be severely damaged, and therefore fundamental measures need to be prepared to control it. In this study, the types and characteristics of corrosion products were scientifically analyzed according to the re-corrosion of iron artifacts. In addition, the stability of the corrosion products was evaluated by exposing the standard samples under the re-corrosion environment. Re-corrosion proceeded with weeping in reddish brown on the cracks of iron artifacts. Weeping was detected akagan$\acute{e}$ite had a low hydrogen ion concentration and high chloride ion. The selection of standard sample goethite, lepidocrocite, hematite, and magnetite, were evaluated corrosive by weeping. After the samples were immersed in HCl(pH 1), $H_2SO_4$(pH 1), $H_2O$(pH 6) solution, they had been maintained for 180 days in relative humidity of 20%, 50%, 80% to investiage the changes of chemical components. As a result of analysis, the changes of chemical components were not showed in goethite, lepidocrocite, and hematite. But magnetite was changed to lepidocrocite in solution including chloride ion($Cl^-$) and to goethite and lepidocrocite solution including sulfuric acid($SO{_4}^{2-}$). Results of the study, in the case of magnetite known as s stable corrosion compound, it was identified the corrosion of magnetite occurs by corrosive ions, which means weeping generated in the iron artifacts can corrode magnetite as well as base metal.