• Title/Summary/Keyword: hydrogen ion concentration

Search Result 236, Processing Time 0.029 seconds

Effect of Ca and BSA on Hydrogen Ion Concentration in Bovine Sperm Washed Solution (Ca과 BSA가 소 정자세척액내 수소이온농도에 미치는 영향)

  • 박영식;임경순
    • Korean Journal of Animal Reproduction
    • /
    • v.15 no.3
    • /
    • pp.201-205
    • /
    • 1991
  • This study was carried out to investigate the effects of Ca and BSA on hydrogen ion concentration in sperm washed solution. The results obtained were as follows : 1. The hydrogen concentration in 1st and 2nd sperm washed solutions was signifcinatly(p<0.01) higher when sperm was washed with SHPsolution containing 2mM Ca than when sperm washed with SHP solution or SHP solution containing 10mM Ca. 2. The hydrogen ion concentration in sperm washed solution was significnatly(p<0.05) higher when seprm was washed with SHP solution containing BSA-FAF than when sperm was washed with SHP solution or SHP solution containing BSA-V.

  • PDF

Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869

  • Jeong, Kyung Hun;Israr, Beenish;Shoemaker, Sharon P.;Mills, David A.;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1182-1189
    • /
    • 2016
  • Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite derepressed phenotype that has ability to consume fermentable sugars simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effects of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration were deduced empirically. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Although the simultaneous utilization has been observed regardless of hydrogen ion or lactic acid concentration, the preference of substrates and the formation of two-carbon products were changed significantly. In particular, acetic acid present in the medium as sodium acetate was consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

Electrochemical behavior of dissolved hydrogen at Pt electrode surface in a high temperature LiOH-H3BO3 solution: Effect of chloride ion on the transient current of the dissolved hydrogen

  • Myung-Hee Yun;Jei-Won Yeon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3659-3664
    • /
    • 2023
  • The electrochemical behavior of dissolved hydrogen (H2) was investigated at a Pt electrode in a high temperature LiOH-H3BO3 solution. The diffusion current of the H2 oxidation was proportional to the concentration of the dissolved H2 as well as the reciprocal of the temperature. In the polarization curve, a potential region in which the oxidation current decreases despite an increase in the applied potential between the H2 oxidation and the water oxidation regions was observed. This potential region was interpreted as being caused by the formation of a Pt oxide layer. Using the properties of the Cl- ion that reduces the growth rate of the Pt oxide layer, it was confirmed that there is a correlation between the Cl- ion concentration and the transient current of the H2 oxidation.

The properties of low hydrogen content silicon thin films for ELA(Excimer Laser Annealing) (ELA를 위한 저수소화 Si 박막의 특성에 관한 연구)

  • 권도현;류세원;박성계;남승의;김형준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.476-479
    • /
    • 2000
  • In this study, mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that a mesh was attached to the substrate holding electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied dias. Applied DC bias enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom. The structural properties of poly-Si films were analyzed by scanning electron microscopy(SEM).

  • PDF

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.

Treatment of Industrial Wastewater including 1,4-Dioxane by Fenton Process and Electrochemical Iron Redox Reaction Process (Fenton공정과 철 이온의 전기적 산화·환원 반응을 이용한 공정에서 1,4-Dioxane을 포함하는 산업폐수 처리에 관한 연구)

  • Lee, Sang Ho;Kim, Pan Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.375-383
    • /
    • 2007
  • Treatment efficiency research was performed using Fenton process and the electrochemical process in the presence of ferrous ion and hydrogen peroxide for the industrial wastewater including 1,4-Dioxane produced during polymerization of polyester. The Fenton process and the electrochemical Iron Redox Reaction (IRR) process were applied for this research to use hydroxyl radical as the powerful oxidant which is continuously produced during the redox reaction with iron ion and hydrogen peroxide. The results of $COD_{Cr}$ and the concentration of 1,4-Dioxane were compared with time interval during the both processes. The rapid removal efficiency was obtained for Fenton process whereas the slow removal efficiency was occurred for the electrochemical IRR process. The removal efficiency of $COD_{Cr}$ for 310 minutes was 84% in the electrochemical IRR process with 1,000 mg/L of iron ion concentration, whereas it was 91% with 2,000 mg/L of iron ion concentration. The lap time to remove all of 1,4-Dioxane, 330 mg/L in the wastewater took 150 minutes with 1,000 mg/L of iron ion concentration, however it took 120 minutes with 2,000 mg/L of iron ion concentration in the electrochemical IRR process.

Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

  • 김도희;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.696-700
    • /
    • 1999
  • A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H2O2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported.

Degradation of herbicide paraquat by Fenton reagent and UV light irradiation (Fenton 시약 및 UV 광 조사에 의한 제초제 paraquat의 분해)

  • Kim, Byung-Ha;Ahn, Mi-Youn;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.3
    • /
    • pp.20-26
    • /
    • 1999
  • This study was to investigate the potential degradation of a herbicide paraquat by Fenton reagents(ferric ion and hydrogen peroxide) under UV light irradiation(365 nm) in an aqueous solution. When $10{\sim}500$ mg/L of paraquat was reacted with either ferric ion or hydrogen peroxide in the dark or under UV light, no degradation was occurred. However, the simultaneous application of both ferric ion(0.8 mM) and hydrogen peroxide(0.140 M) in paraquat solution(500 mg/L) caused dramatic degradation of paraquat both in the dark (approximately 78%) and under UV light(approximately 90%). The reaction approached an equilibrium state in 10 hours. In the dark, when $0.2{\sim}0.8$ mM ferric ion was added, $20{\sim}70%$ paraquat of $10{\sim}500$ mg/L was degraded, regardless of hydrogen peroxide concentrations($0.035{\sim}0.140$ M), while under UV light, 95% of 10 and 100 mg/L paraquat was degraded regardless of ferric ion and hydrogen peroxide concentrations. At paraquat concentration of 200 and 500 mg/L, paraquat degradation increased with increasing ferric ion concentrations as in the dark. However the increase in hydrogen peroxide concentration did not affect the extent of paraquat degradation. The initial reaction rate constants(k) for paraquat degradation ranged from 0.0004 to 0.0314, and 0.0023 to 0.0367 in the dark and under UV light, respectively. The initial reaction rate constant increased in proportion to the increase in ferric ion concentration in both conditions. The half-lives of paraquat degradation(t1/2) were 20 - 1,980 and 19 - 303 minutes in the dark and under UV light, respectively. This study indicates that Fenton reagents under UV light irradiation are more potent than in the dark in terms of herbicide paraquat degradation in an aqueous solution.

  • PDF

Study on the Distribution of Fluorides in Plants and the Estimation of Ambient Concentration of Hydrogen Fluoride Around the Area of the Accidental Release of Hydrogen Fluoride in Gumi (구미 불산 누출사고 지점 주변 식물의 불소화합물 농도 분포 및 공기 중 불화수소 농도 추정에 관한 연구)

  • Gu, Seulgi;Choi, Inja;Kim, Won;Sun, Oknam;Kim, Shinbum;Lee, Yungeun
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.346-353
    • /
    • 2013
  • Objectives: The goal of this study is to identify the distribution of the foliar fluorine content of vegetation surrounding the area where hydrofluoric acid was accidently released in Gumi, Gyeongsangbuk-do on September 27, 2012. In addition, it also aims to estimate the concentration of hydrogen fluoride in the air on the day of the accident. Methods: Samples of plant leaves were collected on October 7, 2012 within 1 km from the site where the accident occurred. These samples were analyzed for soluble fluorine ion with an ion selective electrode. The ambient concentration of hydrogen fluoride was calculated using the fluoride content in the plant via the dose-rate equation (${\Delta}F$=KCT). Results: The arithmetic and geometric means of the concentrations were 2158.2 and 1183.7mg F $kg^{-1}$ for leaves and, 2.4 and 1.1 ppm HF for the air, respectively. The highest concentration of hydrogen fluoride in the air was 14.7 ppm, which is higher than the maximum concentration reported by the government (1 ppm) and the exposure limit (ceiling, 3 ppm). The concentrations of both fluorine and hydrogen fluoride decreased with increasing distance from the accident site and showed a significant decrease outside of a 500m radius from the site (p <0.05). Conclusions: The area around the accident site was highly polluted with hydrogen fluoride according to the results of this study. Considering the persistency of hydrogen fluoride in the environment, long-term monitoring and environmental impact assessment should be pursued.

The Properties of Low Hydrogen Content α-Si Thin Film Using DC-bias Enhanced or Addition of H2Gas in Mesh-type PECVD System (Mesh-type PECVD를 이용한 DC-bias인가 및 수소가스 첨가에 따른 저수소화 비정질 실리콘 박막에 관한 연구)

  • Ryu, Se-Won;Gwon, Do-Hyeon;Park, Seong-Gye;Nam, Seung-Ui;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.235-239
    • /
    • 2002
  • In this study mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that, a third electrode, a mesh, is inserted between the powered and the ground electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied bias. Applied DC-bia s enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom.