• 제목/요약/키워드: hydrogen generation

검색결과 809건 처리시간 0.025초

주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화 (Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell)

  • 강태성;함성현;오환영;최윤영;김민진
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.

잠호용접부 균열방지를 위한 용접 플락스 및 시공기법 개발 (Development of Welding Flux and Process for Prevention of Cold Cracking in SAW Weld Metal)

  • 최기영;김찬;김영필
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.118-127
    • /
    • 2007
  • SAW(Submerged Arc Welding) process is generally applied to a wide range of welding area in the fabrication of steel structure. This process has a good characteristic properties such as the high quality of welds and the high deposition rates, but in case of welding on a thick steel plate, it also has higher cold crack susceptibility than that of a thin steel plate. The purpose of this research is to find the main factor of crack generation and clarify the countermeasure for crack prevention, and then establish the optimum welding condition in a heavy thick steel plate. The results of this study are as follows, 1. The cause of crack generation is found the diffusible hydrogen penetrated into weld metal by decomposition of the remained moisture in SAW flux during welding. 2. For the removal of diffusible hydrogen, the raw materials of SAW flux are to be dehydrated at the high temperature in the initial manufacturing stage. 3. Mechanical properties of weld metal welded with the dehydrated SAW flux were evaluated very excellent, furthermore the weld metal has been proved to have low diffusible hydrogen content with 3.1ml /100g. 4. The weldability and quality welded with thick steel plates were improved by establishing the new optimum welding condition.

  • PDF

자열개질기의 운용조건에 따른 열유동 수치해석 (Thermal Flow Analysis of Operating Parameters in Autothermal Reformer)

  • 박승환;김진욱;박달영;김재동;이도형
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.61-67
    • /
    • 2011
  • The study is to analyze the chemical and heat-flow reactions in the hydrogen generation unit(autothermal reformer), using computational numerical tools. Autothermal reformer(ATR) is involved in complex chemical reaction, mass and heat transfer due to exothermic and endothermic reactions. Therefore it is necessary to reveal the effects of various operation parameters and geometries on the ATR performance by using numerical analysis. Numerical analysis needs to dominant chemical reactions that includes Full Combustion(FC) reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction and Direct Steam Reforming(DSR) reaction. The objective of the study is to improve theoretically the reformer design capability for the goal of high hydrogen production in the autothermal reformer using methane. Hydrogen production reached maximum in a certain value of Oxygen to Carbon Ratio(OCR) or Steam to Carbon Ratio(SCR). When the longitudinal distance to dimeter ratio(L/D) is increased, hydrogen production increases.

수소연소를 이용한 선형발전기 제어 (Control of Linear Generator Using Hydrogen as a Fuel)

  • 이승희;정승기;최주엽;최준영;오시덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2008
  • Global warming and air pollution have increased the amount $CO_2$ in the atmosphere. In order to decrease the amount of $CO_2$, lots of researches are conducted toward using Hydrogen energy. Because of its high efficiency energy level and environmental friendly features, many companies have researched on developing hydrogen engine system and distributed generation system. Especially, the focus of this research provides the operation method of linear generator for hydrogen fuel combustion linear engine. During an ignition, linear generator is operated by motor to create the initial condition of engine combustion. Once the engine combustion is stabilized, the generator supplies electric power to grid. In order to stabilize the engine, linear generator is required to control mover frequency, direction, and force; Hence the PCS(Power Conversion System) place three H-bridge type inverter stacks in parallel to control phase current independently. As well, by using Back-to-Back method, it can receive electric power from both end.

  • PDF

발전기 고정자 권선의 절연열화 메카니즘 분석 (Analysis of Insulation Aging Mechanism in Generator Stator Windings)

  • 김희동
    • 한국전기전자재료학회논문지
    • /
    • 제15권2호
    • /
    • pp.119-126
    • /
    • 2002
  • The mica/epoxy composite used in generator(rated 22 kV and 500 MW) stator windings was aged at 180$\^{C}$ for up to 1000 hours in air and hydrogen. The degradation mechanism was investigated through the defect of evolution and microstructural analysis by performing SEM(Scanning Electron Microscope). As the thermal aging time increases, the number of voids per unit volume increases at the mica/epoxy interface of generator stator windings. The aged specimens in hydrogen showed retarded generation and growth of voids. Accelerated aging tests were conducted using the combination of thermal and electrical aging in air and hydrogen. The aging was carried out at a combined stress such as thermal aging at 110$\^{C}$, electrical aging at 5.5 kV/mm and frequencies 420 Hz in air, and electrical aging at 5.5 kV/mm and frequencies 420 Hz in hydrogen (pressure 4 kg/㎠). Thermal and electrical aging generates large voids at the mica/epoxy interface in air. Electrical aging in hydrogen also generates small voids, delaminations and cracks in mica tapes.

Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성 (Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method)

  • 채의석;홍현선;추수태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.

분산형 소형 연료전지용 1KW급 열교환기 설계 (Heat Exchanger Design For The Individually Allocated Fuel Cell For 1kw Power generation)

  • 이택홍;박태성;김태완;노재현;강영진
    • 한국수소및신에너지학회논문집
    • /
    • 제25권1호
    • /
    • pp.39-46
    • /
    • 2014
  • Our lab designs a heat exchangers for hydrogen gas. Coolant is water, thus it is very difficult to determine heat transfer parameters in this gas-liquid system. Repeated experiments gives overdesign value 6.06%, overall heat transfer coefficient 36.32 ($kcal/m^2-hr-^{\circ}C$) for Hydrogen. Theoretically determined overall heat transfer coefficient is 38.44 ($kcal/m^2-hr-^{\circ}C$). Our lab simulated this system and overdesign 30.4% shows good match with this experiment by HTRI. These parameters are in same range with literature.

Inhibition of Hydrogen Formation with Calcium Hydroxide on Zinc Electrode of Film-type Manganese Battery

  • Yun, Je-Jung;Kim, Nam-In;Hong, Chang Kook;Park, Kyung Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.135-138
    • /
    • 2015
  • A manganese dioxide (MnO2) layer and zinc (Zn) layer are used as the cathode and the anode to develop filmtype manganese battery, in which a stack of a MnO2 layer, gel electrolyte, and Zn layer are sandwiched between two plastic layers. This paper describes the chemical equation of swelling control upon the film-type manganese battery. We examined the reduction of hydrogen formation, by using calcium hydroxide Ca(OH)2 as an additive in the electrolyte of film-type manganese battery. The phenomena or an effect of reduced hydrogen gas was proven by cyclic voltammogram, X-ray photoelectron spectra (XPS), and volume of hydrogen formation. The amount of H2 gas generation in the presence of Ca2+ ion was reduced from 4.81 to 4.15 cc/g-zinc (14%), and the corrosion of zinc electrode in the electrolyte was strongly inhibited as time passed.

Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

  • Norouzi, Nima;Talebi, Saeed;Fani, Maryam;Khajehpour, Hossein
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2753-2760
    • /
    • 2021
  • This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

스마트시티용 고효율/친환경 에너지생산장치의 조건 분석 (Perspective: Analysis of Conditions for High-efficiency/Eco-friendly Energy Production Devices for Smart Cities)

  • 강상욱;김정욱
    • 멤브레인
    • /
    • 제33권1호
    • /
    • pp.46-51
    • /
    • 2023
  • 본 연구의 목적은 스마트시티 구축의 핵심인 수소연료전지의 활용형태를 분석하고 해결방안을 제시하는 것이다. 수소연료전지를 활용하는 발전소의 경우 간헐성 문제가 없다는 장점 때문에 향후 가장 유망한 사용 형태로 분석됐다. 다만 많은 장점에도 불구하고 폭발 우려와 특정 수소 생산방식의 경우 이산화탄소 발생 문제 등으로 지역주민들의 반발이 지속적으로 나타나고 있어 이를 해결하는 것이 스마트시티 구축의 주요 관건이 될 것으로 분석된다. 마지막으로 현재의 수소 생산방식을 분석하고 이에 따른 문제점을 파악하여 스마트시티의 완전한 구축을 위한 해결책을 제시하였다.