• Title/Summary/Keyword: hydrogen generation

Search Result 805, Processing Time 0.026 seconds

Study on Thermodynamic Performance of Electrochemical Hydrogen Compressor (전기화학적 수소 압축기의 열역학적 성능에 관한 연구)

  • TEAHEON KIM;DONGYUN KIM;DONGKEUN LEE;YOUNGSANG KIM;KOOKYOUNG AHN;YONGGYUN BAE;JINYOUNG PARK;YOUNG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.141-148
    • /
    • 2023
  • The thermodynamic performance of the electrochemical hydrogen compressor was analyzed to perform a comparative analysis with the performance of the mechanical compressor. The performance was analyzed through the applied current and the measured voltage value. The test results showed that the efficiency of the electrochemical hydrogen compressor was high in the low current density range. In addition, it was confirmed that the amount of increasing compress work of the electrochemical hydrogen compressor is smaller than that of the mechanical compressor. Therefore, it is expected to have higher efficiency than mechanical compression when compressed with a sufficiently high-pressure range.

Characteristics of Hydrogen Generation from Methanol and Ethanol using Cylindrical Barrier Discharge (실린더형 무성방전을 이용하여 메탄올과 에탄올로부터 수소발생 특성)

  • Park, Jae-Youn
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.32-39
    • /
    • 2010
  • Hydrogen is sustainable energy without environment pollution. In this study, experiments and analysis of hydrogen generation from gases methanol and ethanol using cylindrical barrier discharge reactor was carried out. The discharge reactor to generate hydrogen molecules used in this work is one type of Non-thermal Plasma (NTP) reactors and neon-transformer as power source to make a plasma was used. Hydrogen concentrations were measured as parameters of applied voltage, concentrations of methanol and ethanol, and flow rates of carrier gases($N_2$). Hydrogen generation increased according to applied voltage and produced largely in case of methanol compared with ethanol. It is thought that the reason is deeply related with those different chemical structures. Energy yield of hydrogen generation in case of ethanol decreases according to increasing applied voltage, but that in case of methanol has a peak at applied voltage of 22[kV] and decreased. Specifically, hydrogen generation increased with increasing applied voltage, but low voltage was better, which is the best parameter in the aspects of energy efficiency.

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

A Study on the Catalysts for Hydrogen Generation Reaction Using NaBH4 Solution (NaBH4를 이용한 수소발생반응의 촉매에 관한 연구)

  • Jeong, SeougUk;Cho, EunAe;Oh, In-Hwan;Hong, Sunn-Ahn;Kim, Sung-Hyun;Seo, Yong Gyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.114-121
    • /
    • 2003
  • Hydrogen generation system using aqueous $NaBH_4$ solution was developed for feeding small polymer electrolyte membrane fuel cells (PEMFCs). Ru was selected as a catalyst with its high activity for the hydrogen generation reaction. Hydrogen generation rate was measured with changing the solution temperature, amount of catalyst loading, $NaBH_4$ concentration, and NaOH (a base-stabilizer) concentration. A passive air-breathing 2 W PEMFC stack was operated on hydrogen generated using $20wt%\;NaBH_4+5wt%$ NaOH solution and Ru catalyst.

A study on the bipolar plate of electrolytic cell of hydrogen gas generation system by numerical system (수소가스발생 장치의 전해조의 분리판에 관한 전사모사 연구)

  • Jo, Hyeon-Hak;Lee, Sang-Ho;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This study is focused on the modeling of two phase fluid flow system in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.

Design and Validation of a Fuel Cell System with a NaBH4 Hydrogen Generation System for Future Defense Unmanned Vehicles (미래 국방 무인 이동체를 위한 NaBH4 수소 발생 시스템 기반 연료전지 시스템 설계 및 검증)

  • SEONG MO YUN;MIN JAE KIM;CHAE MIN HWANG;TAE HOON LEE;SU SANG YU;TAEK HYUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.152-161
    • /
    • 2024
  • In this study, a fuel cell system for future defense unmanned vehicles was designed and validated. A Co/Al2O3-Ni foam catalyst for NaBH4 hydrolysis was characterized using several analytical methods. A NaBH4 hydrogen generation system with the Co/Al2O3-Ni foam catalyst continuously generated hydrogen at elevated reaction temperatures. The fuel cell system with the NaBH4 hydrogen generation system was designed and tested. The performance of the fuel cell system was comparable to that of the fuel cell system using pure hydrogen. Therefore, the fuel cell system with the NaBH4 hydrogen generation system is a suitable power source for future defense unmanned vehicles owing to its easy refueling and simple system.

Study on the Effects of Ultrasonic Wave for the Effective Hydrogen Generation by Electrical Discharge Plasma Process

  • Park Jae-Youn;Cong Nghi-Vu;Han Sang-Bo;Kim Jong-Seok;Park Sang-Hyun;Lee Hyun-Woo;Lee Su-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2006
  • The research was tried to investigate the hydrogen generation from water by the pulsed power plasma process. Hydrogen was generated by way of the electrical pulse power discharge process with the ultrasonic wave. The yield on the hydrogen generation was also studied with and without operating the ultrasonic generator, in which the applied high voltage was varied from 10 kV to 15 kV. Nitrogen and argon gases were used as working gases. As the results, the generation yield using the pure nitrogen gas is better than argon and mixed gases such as argon and nitrogen. Hydrogen concentration are significantly increased when the ultrasonic generator was operated with the electrical discharge simultaneously. It is increased with increasing the applied ultrasonic level as well.

Parametric Study on High Power SOEC System (고출력 SOEC 시스템의 매개변수 연구)

  • BUI, TUANANH;KIM, YOUNG SANG;GIAP, VAN-TIEN;LEE, DONG KEUN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.470-476
    • /
    • 2021
  • In the near future, with the urgent requirement of environmental protection, hydrogen based energy system is essential. However, at the present time, most of the hydrogen is produced by reforming, which still produces carbon dioxide. This study proposes a high-power electrolytic hydrogen production system based on solid oxide electrolysis cell with no harmful emissions to the environment. Besides that, the parametric study and optimization are also carried to examine the effect of individual parameter and their combination on system efficiency. The result shows that the increase in steam conversion rate and hydrogen molar fraction in incoming stream reduces system efficiency because of the fuel heater power increase. Besides, the higher Faraday efficiency does not always result a higher system efficiency.

Hydrogen Generation by Electrical Discharge across Water-Vapor Interface (물-수증기 계면을 통한 전기방전에 의한 수소 제조)

  • Kang, Gou-Jin;Lee, Soo-Chang;Choi, Yong-Man;Lee, Woong-Moo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.4
    • /
    • pp.155-160
    • /
    • 1997
  • Generation of hydrogen and oxygen gas from water is mostly accomplished by electrolysis. In this report, a scheme is presented regarding the gas generation based on plasmolysis. Unlike electrolysis water dissociation by electrical discharge (plasmolysis) requires a high voltage to cause either electron emission or electron capture, and subsequent ionization of involved molecular species. When electrical discharge is initiated between electrodes separated by water-vapor interface, a very large electric field(~100kV/cm) is developed at the tip of the electrode placed in the vapor phase. It is found that the efficiency of plasmolysis depends on the polarity of the electrode placed in the vapor phase. Also presented is the scheme of hydrogen and oxygen generation by such electrical discharge.

  • PDF

Development of Porous Co-P Catalyst for Hydrogen Generation by Hydrolysis of $NaBH_4$ (Sodium Borohydride의 수소발생을 위한 다공성 Co-P 촉매 개발)

  • Cho, Keun-Woo;Eom, Kwang-Sub;Kwon, Hyuk-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.448-453
    • /
    • 2006
  • Porous Co-P catalysts electroplated on Cu in chloride based solution with an addition of $NaH_2PO_2$ and glycine were developed for hydrogen generation from alkaline $NaBH_4$ solution. The microstructures of the Co-P catalysts and their hydrogen generation properties were analyzed as a function of cathodic current density and plating time during the electrodeposition. Amorphous Co-P electrodeposits with porous structure was formed on Cu at cathodic current density of $0.05\;A/cm^2$, and showed very high hydrogen generation rate in alkaline $NaBH_4$ solution due to an increase in the surface area of the catalyst as well as the catalytic activity. The Co-P catalyst, which was obtained at cathodic current density of $0.05\;A/cm^2$ for 5 min, exhibited the best hydrogen generation rate of 2290 ml/min.g-catalyst in 1 wt. % NaOH+10 wt. % $NaBH_4$ solution at $30^{\circ}C$.