DOI QR코드

DOI QR Code

Characteristics of Hydrogen Generation from Methanol and Ethanol using Cylindrical Barrier Discharge

실린더형 무성방전을 이용하여 메탄올과 에탄올로부터 수소발생 특성

  • 박재윤 (경남대학교 전기공학과)
  • Received : 2010.03.12
  • Accepted : 2010.05.25
  • Published : 2010.08.31

Abstract

Hydrogen is sustainable energy without environment pollution. In this study, experiments and analysis of hydrogen generation from gases methanol and ethanol using cylindrical barrier discharge reactor was carried out. The discharge reactor to generate hydrogen molecules used in this work is one type of Non-thermal Plasma (NTP) reactors and neon-transformer as power source to make a plasma was used. Hydrogen concentrations were measured as parameters of applied voltage, concentrations of methanol and ethanol, and flow rates of carrier gases($N_2$). Hydrogen generation increased according to applied voltage and produced largely in case of methanol compared with ethanol. It is thought that the reason is deeply related with those different chemical structures. Energy yield of hydrogen generation in case of ethanol decreases according to increasing applied voltage, but that in case of methanol has a peak at applied voltage of 22[kV] and decreased. Specifically, hydrogen generation increased with increasing applied voltage, but low voltage was better, which is the best parameter in the aspects of energy efficiency.

오늘날 화석연료의 다량 사용에 의한 환경오염이 지구온난화를 가속시키고 기상이변을 일으키며 지구생태계에 심각한 영향을 미치고 있다. 수소는 이러한 환경문제를 근본적으로 해결해 줄 지속 가능한 그린에너지로 생각되고 있다. 본 연구는 결합구조가 다른 메탄올 및 에탄올의 개질을 통한 수소발생을 위해 실린더형 배리어 방전형의 반응기를 제작하였다. 반응기에 인가되는 고전압의 크기, 메탄올 및 에탄올 농도 및 캐리어 가스(N2) 유량 등의 변화에 따른 반응기의 방전특성과 수소발생 특성을 측정하고 화학구조에 따른 수소발생 영향을 분석하였다. 수소발생은 인가전압의 증가에 따라 선형적으로 증가하였고 메탄올의 경우가 많았다. 이는 메탄올과 에탄올의 결합구조와 관련이 있는 것으로 생각된다. 수소발생 에너지효율은 에탄올의 경우 인가전압이 증가하여 방전전력이 증가할수록 전체적으로 감소하지만 메탄올의 경우 전압 22[kV](peak-to-peak)를 인가한 경우 가장 에너지 효율이 높게 나타났다.

Keywords

References

  1. M. Deminsky, V.Jivotov, B. Potapkin, and V. Rusanov. “Plasma assisted production of hydrogen from hydrocarbons”. Pure Appl. Chem., Vol.74, No.3, pp.423-418, 2002. https://doi.org/10.1351/pac200274030423
  2. S.Z. Baykara “Hydrogen production by direct solar thermal decompostion of water, posibilities for improvement of process efficiency”. International Journal of Hydrogen Energy 29 (2004) pp. 1451 1458. https://doi.org/10.1016/j.ijhydene.2004.02.014
  3. H. Kabashima, H. Einaga, and S. Futamura, “Hydrogen Generation From Water, Methane, and Methanol With Nonthermal Plasma,” IEEE Trans. Indus. Appl., Vol. 39, No. 2, 340-345, 2003. https://doi.org/10.1109/TIA.2003.808968
  4. Steinberg M, Cheng H., “Modern and prospective technologies for hydrogen from fossil fuels,” J. Hydrogen Energy, Vol. 14, No. 11, 797-820, 1989. https://doi.org/10.1016/0360-3199(89)90018-9
  5. N. Z. Muradov, “How to produce hydrogen from fossil fuels without $CO_2$ emission” J. Hydrogen Energy, Vol. 18, No. 3, 1247-1251, 1993.
  6. Gaudernack B, Lynum S., “Hydrogen from natural gas without release of $CO_2$ to the atmosphere” J. Hydrogen Energy, Vol. 23, No. 12, 1087-1093, 1998. https://doi.org/10.1016/S0360-3199(98)00004-4
  7. 한국화학공학회 著, “에너지공학”, 교보문고, pp. 454-471 (1996).
  8. N. Nagai, M. Takeuchi et al., “Existence of optimum space between electrodes on hydrogen production by water electrolysis” J. Hydrogen Energy, Vol. 28, No. 1, 35-41, 2003. https://doi.org/10.1016/S0360-3199(02)00027-7
  9. Tai Kyu Lee, “Photocatalytic water splitting for hydrogen production,” J. Korean Hydrogen Energy Society, Vol. 11, No. 4, 23-27, 2000.
  10. Li Y, Lu G, Li S “Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectrosopy. Chemosphere 2003; 52 (5): 843-50. https://doi.org/10.1016/S0045-6535(03)00297-2
  11. Kida T. Guan GQ, Yamada N, Ma TL, Kimura K, Yoshida A “Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation” International Journal Hydrogen Energy 2004; 29(3): 269-74. https://doi.org/10.1016/j.ijhydene.2003.08.007
  12. Abe T, Suzuli E, Nagoshi K, Miyashita K, Kaneko M “Electron source in photoinduced hydrogen production on Pt-supported $TiO_2$ particles. Journal Phys Chem B 1999; 103(7): 1119-23. https://doi.org/10.1021/jp983265x
  13. Jing D, Zhang Y, Guo L. “Study on the synthesis of Ni doped mesoporous $TiO_2$ and its photocatalytic activity for hydrogen evolution in aqueous methanol solution”. Chem. Phys. Letters 415 (2005) 74-78. https://doi.org/10.1016/j.cplett.2005.08.080
  14. Thammanoon S, Yoshikazu S, Susumu Y. “Photocatalytic evolution of hydrogen over mesoporous $TiO_2$ supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template”. International Journal. Hydrogen Energy, 2004.
  15. A.A. Nada, M.H. Barakat, H.A. Hamed, N.R.Mohamed, T.N. Veziroglu. “Study on the photocatalystic hydrogen production using suspended modified $TiO_2$ photocatalyst”. International Journal Hydrogen Energy Vol.30 (2005) pp. 687-691.
  16. Linsebigler AL, Lu G, Yates Jr. JT “Photocatalysis on $TiO_2$ surfaces: principle, mechanism, and selected results” Chem. Rev 1995; 95 (3): 735-58. https://doi.org/10.1021/cr00035a013
  17. Tetsuji Oda, Member IEEE, Tadashi Takahashi, Hiroshi Nakano, “Decomposition of Fluorocarbon Gaseous Contaminants by Surface Discharge-Induced Plasma Chemical Processing” IEEE transactions on industry applications, Vol. 29, NO. 4, pp. 787-792, 1993. https://doi.org/10.1109/28.231995
  18. Tetsuji Oda, Member IEEE, Ryuichi Yamashita, Ichiro Haga, “Decomposition of Gaseous Organic Contaminants by Surface Discharge Induced Plasma Chemical Processing” IEEE transactions on industry applications, Vol. 32, NO. 1, pp. 118-129, 1996. https://doi.org/10.1109/28.485822
  19. Toshiaki Yamamoto, Kumar Ramanathan, Phil A. Lawless, David S. Ensor, J Randall Newsome, Norman Plaks, and Geddes H, Ramsey, “Control of Volatile Organic Compounds by an ac Energized Ferroelectric Pellet Reactor and a Pulsed Corona Reactor” IEEE transactions on industry applications, Vol. 28, NO. 3, pp. 528-534, 1992. https://doi.org/10.1109/28.137430
  20. Vladimir Lipovetsky, “Gaseous hydrogen production by water dissociation method” J. Hydrogen Energy, Vol. 28, No. 4, 377-279, 2003. https://doi.org/10.1016/S0360-3199(02)00085-X
  21. M. J. Kirkpatrick, W. C. Finney, and B. R. Locke, “Hydrogen, Oxygen, and Hydrogen Peroxide formation in electrohydraulic discharge” ISNTPT-4, May 11, 183-188, 2004.
  22. 김종원, “수소에너지 전망과 국제협력”, 한국화학공업회.