• 제목/요약/키워드: hydrogen gas usage

검색결과 33건 처리시간 0.023초

수소센서 기술의 고찰과 최근동향 (Review and new trends of hydrogen gas sensor technologies)

  • 한상도
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.67-86
    • /
    • 2010
  • Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.

FMEA를 이용한 수소 국제표준 제정의 방법론 (Methodology for the International Standardization of Hydrogen using FMEA)

  • 구연진;강병익;임상식;조영도
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.7-12
    • /
    • 2018
  • 수소 에너지는 20 세기 대표에너지인 석유, 석탄의 대체 에너지로 각광받고 있다. 또한, 수소에너지가 가지고 있는 미세먼지 제로, 풍부한 에너지원 그리고 생태계의 무영향 등의 이점은 다른 신재생 에너지원보다 비교우의를 점하도록 하고 있다. 하지만, 수소 에너지의 명확하지 못한 제품 개발기준과 사용법은 수소 에너지 관련 제품군의 사고 위험도를 높이고, 수소의 높은 에너지 준위는 사고 발생 시, 큰 사회적 문제를 일으킬 요소를 내재하고 있다. 따라서, 본 연구는 빠른 수소 에너지의 표준화 방안을 제시하여 신제품 개발이 대부분인 수소 에너지 관련 제품의 안전한 시장 정착에 도움을 주고자 한다.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

Effect of a Series Connection of a Bi-Electrolyte Hydrogen Sensor in a Leak Detector

  • Han, Hyeuk Jin;Park, Chong Ook;Hong, Youngkyu;Kim, Jong Suk;Yang, Jeong Woo;Kim, Yoon Seo
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.6-9
    • /
    • 2015
  • Conventional leak detectors are widely based on helium gas sensors. However, the usage of hydrogen sensors in leak detectors has increased because of the high prices of helium leak detectors and the dearth in the supply of helium gas. In this study, a hydrogen leak detector was developed using solid-state hydrogen sensors. The hydrogen sensors are based on Park-Rapp probes with heterojunctions made by oxygen-ion conducting Yttria-stabilized zirconia and proton-conducting In-doped $CaZrO_3$. The hydrogen sensors were used for determining the potential difference between air and air balanced 5 ppm of $H_2$. Even though the Park-Rapp probe shows an excellent selectivity for hydrogen, the sensitivity of the sensor was low because of the low concentration of hydrogen, and the oxygen on the surface of the sensor. In order to increase the sensitivity of the sensor, the sensors were connected in series by Pt wires to increase the potential difference. The sensors were tested at temperatures ranging from $500-600^{\circ}C$.

연료전지 자동차용 수소센서의 히터 조건에 따른 열전달 특성에 관한 연구 (Study on Heat Transfer Characteristics by Heater Conditions of Hydrogen Sensor for Fuel Cell Electric Vehicle)

  • 서호철;박경석
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.23-29
    • /
    • 2013
  • In recent years, development of energy conversion systems using hydrogen as an energy source has been accelerated globally. Even though hydrogen is an environment-friendly energy source, safety and effectiveness issues in storage, transportation, and usage of hydrogen should be clearly resolved in every application. Therefore, sensors for detecting hydrogen leakage, especially for fuel cell electric vehicles, should be designed to have much higher resolution and accuracy in comparison with conventional gas sensors. In this study, we conducted to determine the design parameters for the semiconductor hydrogen sensor with optimized sensing conditions under the thermal distribution characteristic and thermal transfer characteristic. The heat generation study on power supply voltage was studied for correlation analysis of thermal energy according to the power supply voltage variation from 1.0 voltage to 10.0 voltage every 0.5 voltage. And we studied for the temperature coefficient of resistance with hydrogen sensor.

캐스캐이드형 연료전지 모듈 벤트 로직 최적화 (Optimization of Vent Logic for Cascade Type Fuel Cell Module)

  • 임종구;박종철;권기욱;신현길
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • Many type of fuel cell stacks have been developed to improve the efficiency of reactants usage. The cascade type fuel cell stack using dead end operation is able to attain above 99% usage of hydrogen and oxygen. It is sectionalized to several parts and the residual reactants which are used previous parts would be supplied again to next parts which have less number of cells in dead end operation stack. The oversupply of reactants which is usually 120%~150% of the theoretical amount to generate current for preventing the flooding effect could be provided to each part except the last one. The final section which is called monitoring cells is supposed to be supplied insufficient the fuel or oxidant that would have some accumulated inert gas from former parts. It makes some voltage drop in the part and the fresh reactants must be supplied to the part for recovering it by venting the residual gas. So the usage of fuel and oxidant is depend on the time and frequency of opening valves for venting of residual gas and it is important to optimize the vent logic for achieving higher usage of hydrogen and oxygen. In this research, many experiments are performed to find optimal condition by evaluating the effect of time and frequency under several power conditions using over 100kW class fuel cell module. And the characteristics of the monitoring cells are studied to know the proper cell voltage which decide the condition of opening the vent valve for stable performance of the cascade type fuel cell module.

  • PDF

동전기적 가스발생방식의 자동윤활주유기 개발 (Development of Automatic Grease Lubricator for Gas Generation Type of Galvanic Electricity)

  • 왕덕현
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.121-127
    • /
    • 2008
  • Automatic grease lubricator is an equipment that provides adequate amount of fresh grease constantly to the shaft and bearings of machines. It minimizes the friction heat and reduces the friction loss of machines to the least. This paper is developing an automatic grease lubricator using a mode of the gas generation type from galvanic electricity. The ultimate goal of this equipment is to lubricate an adequate amount of grease with galvanic corrosion. In an electrolyte, combining anode(Mo) with cathode(Zn) is pressing out hydrogen gas of an galvanic element with galvanic reaction. The characteristics of this method is continuous flowing small hydrogen gas and controling the usage of the amount of the generation of hydrogen gas. The exterior body of grease lubricator was analyzed by Digital Mock-up of CATIA V5 and finite element analysis. The maximum stress is distributed over the outlet part where the grease lubricator suddenly narrowly contracts. The outlet part is analyzed with different constructed angle due to the different loading and setting angles. Using the analyzed design, RP trial products were producted and tested.

  • PDF

모바일 연료전지용 초소형 수소 레귤레이터 (Small Hydrogen Regulator for Mobile Fuel Cells)

  • 김형진;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.129-132
    • /
    • 2011
  • This paper presents small hydrogen regulator for the mobile fuel cell. Mobile fuel cell is generally classified into open-end type and dead-end type. In the open-end type, flow rate of hydrogen is constantly controlled, while pressure of hydrogen is constantly maintained in the dead-end type. Considering the efficiency and stability of the fuel usage, dead-end type is more suitable with mobile fuel cell. Mobile fuel cell operated by dead-end mode requires hydrogen regulator which controls the hydrogen pressure from 0.1bar to 0.5bar within 3% error. In this paper, small hydrogen regulator (volume of 2.6cc) was fabricated by stainless steel. Regulation characteristics was experimentally evaluated.

수소 혼소 디젤 기관의 성능 및 미립자상 물질의 배출 특성에 관한 연구 (A Study on the Performance and Particulate Emission Characteristics for the Hydrogen-Premixed Diesel Engine)

  • 채재우;한동성;이상만;전영남;정영식
    • 한국자동차공학회논문집
    • /
    • 제1권2호
    • /
    • pp.34-41
    • /
    • 1993
  • In order to reduce harmful substances such as particulates and nitric oxides emitted from diesel engine, man kinds of methodology like high pressure spray of diesel fuel oil, exhaust gas recirculation, emulsified fuel usage and dual fuelling have been studied. Dual fuelling of a diesel engine with hydrogen which is well-known as the clean fuel and has excellent combustibility is expected to be effective in reducing harmful substances from diesel engine. This experimental study was conducted to investigate the effect of premixed hydrogen with intake air on the performance and particulate emission characteristics using a single cylinder, prechamber type diesel engine. As a result, it was clarified that a hydrogen-premixed diesel engine can be operated in the state of lower particulate emission and slightly aggravated fuel economy, compared with the conventional diesel engine.

  • PDF

마이크로웨이브 플라즈마와 촉매를 이용한 메탄으로부터 수소 밀 C2+ 화학원료 제조에 환한 연구 (Manufacture of Hydrogen and C2+ Chemicals from Methane using Microwave Plasma and Catalyst)

  • 조원일;백영순;김영채
    • 한국가스학회지
    • /
    • 제5권1호
    • /
    • pp.15-20
    • /
    • 2001
  • 저온 마이크로웨이브 플라즈마와 촉매반응에 의한 메탄올 활성화하여 C2+ 화합물과 수소로 전환하는 반응을 고찰하였다. 금속 촉매인 Fe, Ni과 귀금속 촉매인 Pt, Pd 계열의 촉매로 본 실험을 수행하였다 메탄의 유속이 $20ml\;min^{-1}$일때 플라즈마의 출력이 증가할수록 C2+ 생성물은 29에서 $42\%$로 증가하였으며 동시에 메탄의 커플링 반응에서 발생하는 수소는 0.6에서 0.65 몰분율을 나타내었다. 촉매는 플라즈마 영역 후단에 위치하였을 때, C2+ 생성물이 일정한 수율을 나타내는 반면 에틸렌과 아세틸렌의 선택도는 향상되었다. 플라즈마 반응후 ECR 전기장과 Pd-Ni 이원촉매를 위치했을 때 최고의 C2+ 수율은 $64\%$로 관찰되었다.

  • PDF