• Title/Summary/Keyword: hydrogen gas usage

Search Result 33, Processing Time 0.024 seconds

Review and new trends of hydrogen gas sensor technologies (수소센서 기술의 고찰과 최근동향)

  • Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.67-86
    • /
    • 2010
  • Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.

Methodology for the International Standardization of Hydrogen using FMEA (FMEA를 이용한 수소 국제표준 제정의 방법론)

  • Ku, Yeon-Jin;Kang, Byung-IK;Yim, Sang-Sik;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Hydrogen energy has been attracting attention as an alternative energy source for petroleum and stoneware. In addition, the benefits of hydrogen energy, such as no dust, abundant energy source and no ecological impact, were to compare favorably with other renewable energy sources. However, unclear product development standards and usage of hydrogen energy increase the risk of accidents in hydrogen energy related product lines. And, the high energy level of hydrogen has implications for large social problems in the event of an accident. Therefore, this study suggests the standardization method of fast hydrogen energy to help secure the safe market of hydrogen energy related products, which are mostly developed new products.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

Effect of a Series Connection of a Bi-Electrolyte Hydrogen Sensor in a Leak Detector

  • Han, Hyeuk Jin;Park, Chong Ook;Hong, Youngkyu;Kim, Jong Suk;Yang, Jeong Woo;Kim, Yoon Seo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.6-9
    • /
    • 2015
  • Conventional leak detectors are widely based on helium gas sensors. However, the usage of hydrogen sensors in leak detectors has increased because of the high prices of helium leak detectors and the dearth in the supply of helium gas. In this study, a hydrogen leak detector was developed using solid-state hydrogen sensors. The hydrogen sensors are based on Park-Rapp probes with heterojunctions made by oxygen-ion conducting Yttria-stabilized zirconia and proton-conducting In-doped $CaZrO_3$. The hydrogen sensors were used for determining the potential difference between air and air balanced 5 ppm of $H_2$. Even though the Park-Rapp probe shows an excellent selectivity for hydrogen, the sensitivity of the sensor was low because of the low concentration of hydrogen, and the oxygen on the surface of the sensor. In order to increase the sensitivity of the sensor, the sensors were connected in series by Pt wires to increase the potential difference. The sensors were tested at temperatures ranging from $500-600^{\circ}C$.

Study on Heat Transfer Characteristics by Heater Conditions of Hydrogen Sensor for Fuel Cell Electric Vehicle (연료전지 자동차용 수소센서의 히터 조건에 따른 열전달 특성에 관한 연구)

  • Suh, Hocheol;Park, Kyoungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In recent years, development of energy conversion systems using hydrogen as an energy source has been accelerated globally. Even though hydrogen is an environment-friendly energy source, safety and effectiveness issues in storage, transportation, and usage of hydrogen should be clearly resolved in every application. Therefore, sensors for detecting hydrogen leakage, especially for fuel cell electric vehicles, should be designed to have much higher resolution and accuracy in comparison with conventional gas sensors. In this study, we conducted to determine the design parameters for the semiconductor hydrogen sensor with optimized sensing conditions under the thermal distribution characteristic and thermal transfer characteristic. The heat generation study on power supply voltage was studied for correlation analysis of thermal energy according to the power supply voltage variation from 1.0 voltage to 10.0 voltage every 0.5 voltage. And we studied for the temperature coefficient of resistance with hydrogen sensor.

Optimization of Vent Logic for Cascade Type Fuel Cell Module (캐스캐이드형 연료전지 모듈 벤트 로직 최적화)

  • Lim, Jongkoo;Park, Jongcheol;Kwon, Kiwook;Shin, Hyun Khil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • Many type of fuel cell stacks have been developed to improve the efficiency of reactants usage. The cascade type fuel cell stack using dead end operation is able to attain above 99% usage of hydrogen and oxygen. It is sectionalized to several parts and the residual reactants which are used previous parts would be supplied again to next parts which have less number of cells in dead end operation stack. The oversupply of reactants which is usually 120%~150% of the theoretical amount to generate current for preventing the flooding effect could be provided to each part except the last one. The final section which is called monitoring cells is supposed to be supplied insufficient the fuel or oxidant that would have some accumulated inert gas from former parts. It makes some voltage drop in the part and the fresh reactants must be supplied to the part for recovering it by venting the residual gas. So the usage of fuel and oxidant is depend on the time and frequency of opening valves for venting of residual gas and it is important to optimize the vent logic for achieving higher usage of hydrogen and oxygen. In this research, many experiments are performed to find optimal condition by evaluating the effect of time and frequency under several power conditions using over 100kW class fuel cell module. And the characteristics of the monitoring cells are studied to know the proper cell voltage which decide the condition of opening the vent valve for stable performance of the cascade type fuel cell module.

  • PDF

Development of Automatic Grease Lubricator for Gas Generation Type of Galvanic Electricity (동전기적 가스발생방식의 자동윤활주유기 개발)

  • Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.121-127
    • /
    • 2008
  • Automatic grease lubricator is an equipment that provides adequate amount of fresh grease constantly to the shaft and bearings of machines. It minimizes the friction heat and reduces the friction loss of machines to the least. This paper is developing an automatic grease lubricator using a mode of the gas generation type from galvanic electricity. The ultimate goal of this equipment is to lubricate an adequate amount of grease with galvanic corrosion. In an electrolyte, combining anode(Mo) with cathode(Zn) is pressing out hydrogen gas of an galvanic element with galvanic reaction. The characteristics of this method is continuous flowing small hydrogen gas and controling the usage of the amount of the generation of hydrogen gas. The exterior body of grease lubricator was analyzed by Digital Mock-up of CATIA V5 and finite element analysis. The maximum stress is distributed over the outlet part where the grease lubricator suddenly narrowly contracts. The outlet part is analyzed with different constructed angle due to the different loading and setting angles. Using the analyzed design, RP trial products were producted and tested.

  • PDF

Small Hydrogen Regulator for Mobile Fuel Cells (모바일 연료전지용 초소형 수소 레귤레이터)

  • Kim, Hyung-Jin;Seo, Young-Ho;Kim, Byeong-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.129-132
    • /
    • 2011
  • This paper presents small hydrogen regulator for the mobile fuel cell. Mobile fuel cell is generally classified into open-end type and dead-end type. In the open-end type, flow rate of hydrogen is constantly controlled, while pressure of hydrogen is constantly maintained in the dead-end type. Considering the efficiency and stability of the fuel usage, dead-end type is more suitable with mobile fuel cell. Mobile fuel cell operated by dead-end mode requires hydrogen regulator which controls the hydrogen pressure from 0.1bar to 0.5bar within 3% error. In this paper, small hydrogen regulator (volume of 2.6cc) was fabricated by stainless steel. Regulation characteristics was experimentally evaluated.

A Study on the Performance and Particulate Emission Characteristics for the Hydrogen-Premixed Diesel Engine (수소 혼소 디젤 기관의 성능 및 미립자상 물질의 배출 특성에 관한 연구)

  • 채재우;한동성;이상만;전영남;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.34-41
    • /
    • 1993
  • In order to reduce harmful substances such as particulates and nitric oxides emitted from diesel engine, man kinds of methodology like high pressure spray of diesel fuel oil, exhaust gas recirculation, emulsified fuel usage and dual fuelling have been studied. Dual fuelling of a diesel engine with hydrogen which is well-known as the clean fuel and has excellent combustibility is expected to be effective in reducing harmful substances from diesel engine. This experimental study was conducted to investigate the effect of premixed hydrogen with intake air on the performance and particulate emission characteristics using a single cylinder, prechamber type diesel engine. As a result, it was clarified that a hydrogen-premixed diesel engine can be operated in the state of lower particulate emission and slightly aggravated fuel economy, compared with the conventional diesel engine.

  • PDF

Manufacture of Hydrogen and C2+ Chemicals from Methane using Microwave Plasma and Catalyst (마이크로웨이브 플라즈마와 촉매를 이용한 메탄으로부터 수소 밀 C2+ 화학원료 제조에 환한 연구)

  • Cho Wonihl;Baak Youngsoon;Kim Young Chai
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • The microwave plasma and catalytic reaction have been employed to investigate the activation of methane to hydrogen and higher hydrocarbons at low gas temperature. The catalytic activity of Fe, Ni, Pt Pd metal catalysts were also studied in this reaction system. With increasing plasma power at a $CH_{4}$ flow rate of 20 ml/min, C2+ products increased from 29 to $42\%$, whereas hydrogen from 60 to $65\%$. When catalysts were loaded below the plasma region, the selectivitity of ethylene md acetylene increased but the yield of C2+ products remained constant. The usage of ECR electric fie3d and Pd-Ni bimetal catalyst produced a minimum C2+ yield of $64\%$.

  • PDF