• Title/Summary/Keyword: hydrogen gas

Search Result 3,015, Processing Time 0.036 seconds

Biological conversion of CO2 to CH4 in anaerobic fixed bed reactor under continuous operation (혐기성 고정층 생물반응기의 연속운전을 통한 이산화탄소의 메탄전환)

  • Kim, Jaehyung;Koo, Hyemin;Chang, Wonseok;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.347-354
    • /
    • 2013
  • This study was carried out to examine different mole ratio of $H_2/CO_2$ and EBCT using the continuous system in the lab scale throughout biological methods with accumulated hydrogenotrophic methanogen that can convert $CO_2$ to $CH_4$. The experimental-based results with various gas mixtures of mole ratio of 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$), $H_2$ was converted more than 99% conversion rate. In case of $CO_2$, 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$) were $74.45{\pm}0.33%$, $95.8{\pm}10.7%$, respectively, in addition, the study was confirmed that the amount of $H_2$ was more needed than stoichiometric equations, where approach methods are empirical versus theoretical frameworks, for converting total $CO_2$. As such, we have noticed that $H_2$ was used for energy source of hydrogenotrophic methanogen for maintaining life. Regarding the results of the ratio of treatment by retention time, limitation of treatment capacity showed that $H_2$(99.9%) and $CO_2$(96.23%) at EBCT 3.3 hrs indicated stable conversion ratio, as well as appeared that methane production rate and $CO_2$ fixation rate were investigated $1.15{\pm}0.02m^3{\cdot}m^{-3}{\cdot}day^{-1}$ and $2.01{\pm}0.04kg{\cdot}m^{-3}{\cdot}day^{-1}$, respectively.

Interface Control to get Higher Efficiency in a-Si:H Solar Cell

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.193-193
    • /
    • 2012
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is the most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. Single-chamber PECVD system for a-Si:H solar cell manufacturing has the advantage of lower initial investment and maintenance cost for the equipment. However, in single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of single-chamber PECVD system. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. In order to remove the deposited B inside of the plasma chamber during p-layer deposition, a high RF power was applied right after p-layer deposition with SiH4 gas off, which is then followed by i-layer, n-layer, and Ag top-electrode deposition without vacuum break. In addition to the p-i interface control, various interface control techniques such as FTO-glass pre-annealing in O2 environment to further reduce sheet resistance of FTO-glass, thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, and hydrogen plasma treatment prior to n-layer deposition, etc. were developed. The best initial solar cell efficiency using single-chamber PECVD system of 10.5% for test cell area of 0.2 $cm^2$ could be achieved by adopting various interface control methods.

  • PDF

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Reevaluation of hydrogen gas dissolved cleaning solutions in single wafer megasonic cleaning

  • Kim, Hyeok-Min;Gang, Bong-Gyun;Lee, Seung-Ho;Kim, Jeong-In;Lee, Hui-Myeong;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.34.1-34.1
    • /
    • 2009
  • 1970년대 WernerKern에 의해서 개발된 RCA 습식 세정 공정은 이후 메가소닉 기술 개발과 더불어 현재까지반도체 세정 공정에서 필수 공정으로 알려져 있다. 하지만, 반도체패턴의 고집적화 미세화에 따라 메가소닉을 기반으로 하는 세정기술은 패턴 붕괴 및 나노 입자 제거의 한계를 드러내면서 난관에 봉착하고 있으며, 특히, 기존의 Batch식에서 매엽식으로 세정 방식이 전환은 새로운 개념의 메가소닉 기술 개발을 요구하게 되었다. 메가소닉을 사용한습식 세정공정은 메가소닉에 의한 캐비테이션 효과 (Cavitation Effect)에 따른 충격파 및음압 (Acoustic Streaming)에 의한 입자제거를 주요 메커니즘으로 한다. 메가소닉 주파수와 Boundary Layer 두께는, $\delta=\surd(2v/\omega)$($\delta$=두께, v=유체속도), $\omega=2{\pi}f$ (f=주파수), 으로 표현할 수 있다. 위의 식에 따르면, 메가소닉을 이용한 세정공정에서 주파수가 높아질수록 Boundary Layer의 두께가 감소하며, 이는제거 가능한 입자의 크기가 작아짐을 의미하며, 다시말해, 1 MHz 보다 2 MHz 메가소닉 세정장비에서 미세 입자 세정에 유리함을 예상할 수 있다. 본연구에서는 매엽식 세정장비를 사용하여, 1MHz 및 2MHz 콘-타입 (Cone-Type) 메가소닉 장치를 100nm이하 세정 입자에 대한 입자 제거효율을 평가하였다. 입자 제거 효율을 평가하기 위하여, 표준 형광입자(63nm/104nm 형광입자, Duke Scientifics, USA)를각각 IPA에 분산시킨 후, 실리콘 쿠폰 웨이퍼 ($20mm{\times}20mm$)를 일정시간 동안 Dipping 한 후, 고순도 질소로 건조시켜 오염하였다. 매엽식 세정장비(Aaron, Korea)에 1MHz와 2MHz의 콘-타입메가소닉 발진기 (Durasonic, Korea)를 각각 장착하였다.입자 오염 및 세정 후 입자 개수 측정 및 오염입자의 Mapping은 형광현미경 (LV100D, Nikon, Japan)과 소프트웨어(Image-proPlus, MediaCybernetics, USA)를 사용하여 평가하였으며, Hydrophone을 사용하여 메가소닉에서 발생되는 음압의 균일도를 각 조건에서 측정하였다. 각각의 세정공정은 1MHz와 2MHz 메가소닉 발진기 각각에서 1W, 3W, 5W 파워로 1분간 처리하였으며, 매질을 초순수를 사용하였다. 104nm 형광 입자는 1MHz 와 2 MHz 메가소닉 세정기와 모든 세정 공정조건에서 약 99%의 세정효율인 반면, 63nm 형광입자의 경우는 전체적인세정 결과가 80% 대로 감소하였다. 본 연구를 통하여, 입자크기의 미세화에 따른 입자제거효율이 크게 감소 하는 것을 확인할 수 있으며, 기존 Batch식 메가소닉 대비 단시간 및 낮은 전압에서 동일 혹은높은 세정 효율을 얻었다. 다만, 1MHz와 2MHz 메가소닉에서의 세정력은 큰 차이를 관찰 할 수 없었는데, 주파수변화에 따른 세정효율 측정을 위하여 미세 입자를 사용한 추가 실험이 필요 할 것이다.

  • PDF

Some Physical Properties and Adsoptive Behaviors of Wood Charcoal Carbonized with Domestic wood (국산수종으로 탄화한 목탄의 물성 및 흡착성)

  • Jo, Tae-Su;Lee, Oh-Kyu;Ahn, Byung-Jun;Choi, Joon-Weon
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • Properties of wood charcoal made from the domestic wood species at $300-900^{\circ}C$ have investigated to understand the correlation between carbonization temperature and chemical and physical characteristics of wood charcoal. In terms of charcoal yield at particular carbonization temperatures, it was drastically decreased until the temperature reaches up to $600^{\circ}C$ and the decrease ratio of yield was reduced at higher temperatures. As the carbonization temperature increased, pH of the wood charcoal increased so that it became basic at last. The wood charcoal prepared at $600{\sim}700^{\circ}C$ showed the highest caloric value and those of wood charcoals made at higher temperature became plateau at a little lower level than the peak. The caloric value of Japanese larch charcoal was a bit higher than that of Red oak charcoal. The carbon content in the wood charcoal was increased as the carbonization temperature increased, whereas the hydrogen content was decreased. Specific surface area of the wood charcoal became larger with increase in temperature up to $600^{\circ}C$ but it was decreased or reduced in the increasing ratio after, and then it rose again at higher temperature than $800^{\circ}C$. Absorption capacity of the wood charcoal against iodine and gaseous acetic acid became greater as the carbonization temperature increased. Japanese larch charcoal presented higher absorption capacity than Red oak charcoal. As the above results, it is revealed that carbonization temperature affects the chemical and physical properties of wood charcoal. Therefore, to use wood charcoal with maximum effect it should be prepared at optimum temperature for proper use.

  • PDF

Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.171-184
    • /
    • 2002
  • Approx. 200,000 bpd vacuum residue oil is produced from oil refineries in Korea. These are supplying to use asphalt, high sulfur fuel oil, and upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435-500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER(Korea Institute of Energy Research) are studing on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature : 1,100~1,25$0^{\circ}C$, reaction pressure : 1~6kg/$\textrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4-0.5. Experimental results show the syngas composition(CO+H$_2$) : 85~93%, syngas flow rate : 50~110Mm$^3$/hr, heating value : 2,300~3,000 ㎉/Nm$^3$, carbon conversion : 65~92, cold gas efficiency : 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

  • PDF

Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave (스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가)

  • Lee, Jin-Kyung;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

Characteritics of Toluene and $H_2S$ Removal in a Biotrickling filters with Plastic & Woodchip composite Media (복합플라스틱계 담체를 이용한 Biotrickling filters의 Toluene과 황화수소 제거특성)

  • Yim, Dong-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • This study developed composition-plastic media with woodchips and plastic as main materials, and examined the performance of media. Compared to the existing commercial media, the media had similar performance in removal efficiency and microbes attaching characteristic, and was evaluated that they are distinguished from economic side. Performance test of media was conducted to examine the removal capacity of toluene and hydrogen sulfide in a gas stream by using a lab-scale biotrickling filter systems packed with them. At a volumetric loading of $1.5\;m^3/hr$ with inlet concentration 260 ppm and empty bed residence time (EBRT) 42s, the toluene removal efficiency was shown over 90%, and the maximum elimination capacity of toluene in the biotrickling filter was $77g/m^3{\cdot}hr$. Effective co-treatments of $H_2S$ and Toluene were observed in the lab-scale biotrickling filters. The maximum elimination capacity of $H_2S$ was $100\;g-S/m^3{\cdot}hr$. Up to 100 ppm, the concentration of $H_2S$ did not have an effect on toluene removal efficiency, but the removal efficiency of toluene decreased with increasing inlet $H_2S$ concentration.

Characterization of Bio-oils Produced by Fluidized Bed Type Fast Pyrolysis of Woody Biomass (목질바이오매스의 급속열분해에 의해 생성된 바이오오일의 특성 분석)

  • Choi, Joon-Weon;Choi, Don-Ha;Cho, Tae-Su;Meier, Dietrich
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.36-43
    • /
    • 2006
  • Using fluidized bed type fast pyrolysis system (capacity 400 g/h) bio-oils were produced from beech (Fagus sylvatica) and softwood mixture (spruce and larch, 50:50). The pyrolysis was performed for 1~2 s at the temperature of $470{\pm}5^{\circ}C$. Pyrolysis products consisted of liquid form of bio-oil, char and gases. In beech wood bio-oil was formed to ca. 60% based on dry biomass weight and the yield of bio-oil was 49% in soft wood mixture. The moisture contents in both bio-oils were ranged between 17% and 22% and the bio-oil's density was measured to $1.2kg/{\ell}$. Bio-oils were composed of 45% carbon, 47% oxygen, 7% hydrogen and lower than 1% nitrogen,which was very similar to those of original biomass. In comparison with oils from fossil resources, oxygen content was very high in bio-oils, while no sulfur was found. More than 90 low molecular weight components, classified to aromatic and non aromatic compounds, were identified in bio-oils by gas chromatographic analysis, which amounted to 31~33% based on the dry weight of bio-oils.

Experimental Study on the Characteristics of Vacuum Residue Gasification in an Entrained-flow Gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum Residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • Approx. 200.000 bpd vacuum residue oil is produced from oil refineries in Korea, and is supplied to use asphalt, high sulfur fuel oil and for upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however its high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435~500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER (Korea Institute of Energy Research) are studying on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature: 1.100~l,25$0^{\circ}C$, reaction pressure: 1~6 kg/$\textrm{cm}^2$G, oxygen/V.R ratio: 0.8~0.9 and steam/V.R ratio: 0.4~0.5. Experimental results show the syngas composition (CO+H$_2$): 85~93%, syngas flow rate: 50~l10 Nm$^3$/hr, heating value: 2,300~3,000 k㎈/Nm$^3$, carbon conversion: 65~92, cold gas efficiency: 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.