• Title/Summary/Keyword: hydrogen fuel cell electric vehicle

Search Result 88, Processing Time 0.022 seconds

Comparison of WiFi Protocols for Safety Communication Between Hydrogen Refueling Station and Fuel Cell Electric Vehicle (수소충전소와 수소전기차간의 안전통신을 위한 WiFi 프로토콜 비교)

  • Ha-Jin Hwang;Dong-Geon So;Do-Ho Cha;Hye-Jin Chae;Seo-Hee Jung;Sung-Ho Hwang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.81-87
    • /
    • 2023
  • SAE J2601 and SAE J2799, the communication protocols between a hydrogen refueling station and a fuel cell electric vehicle, only cover hydrogen charging. In this paper, we measure the hydrogen detection, current, and voltage of a fuel cell electric vehicle and transmit the sensor data to the hydrogen refueling station by changing the WiFi protocol. A small-scale laboratory model was built using Raspberry Pi for sensing, controlling, and transmitting sensor data of a fuel cell electric vehicle. The sensor data was stored in the database of the hydrogen refueling station, and a dashboard was configured using Grafana to analyze the stored data. When hydrogen is detected, the dispenser valve of the hydrogen refueling station is locked. Then, we measured the average transmission delay according to the WiFi protocol. The results showed that IEEE 802.11a is the most suitable WiFi protocol for transmitting sensor data between the hydrogen refueling station and the fuel cell electric vehicle.

Green pathway to hydrogen fuel cell vehicle (수소 연료전지차로의 전환을 위한 녹색 전략)

  • Lee, Munsu;Lee, Minjin;Lee, Younghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.152.1-152.1
    • /
    • 2011
  • This study analyzes transitions to a green path in transportation system in South Korea. We develop transportation system model with four new technology options, green cars; Hybrid electric vehicle, plug-in hybrid vehicle, electric vehicle and fuel cell vehicle. Among those technologies fuel cell vehicle is the best option assuming no GHG emissions when driving. We use MESSAGE model to get an optimal solution of pathway for high deployment of fuel cell vehicles under the Korea BAU transportation model. Among hydrogen production sources, off gas hydrogen is most economic since it is hardly used to other chemical sources or emits in South Korea. According to off gas hydrogen projection it can run 1.8 million fuel cell vehicles in 2040 which corresponds to 10% of all passenger cars expected in Korea in 2040. However, there are concerns associated with technology maturity, cost uncertainty which has contradictions. But clean pathway with off gas and renewable sources may provide a strong driving force for energy transition in transportation in South Korea.

  • PDF

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle (수소 연료전지차의 재순환시스템 모델링 연구)

  • Kim, Jae-Hoon;Noh, Young-Gyu;Jeon, Ui-Sik;Lee, Jong-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle (수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

Development of Fuel Economy Measurement Technology for Fuel Cell Electric Vehicle (수소연료전지차 연비 평가기술 개발)

  • Jung, Young-Woo;Park, Jeong-Kyu;Ye, Chang-Hwan;Park, Jong-Jin;Oh, Hyung-Seuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.152-155
    • /
    • 2007
  • Fuel cell electric vehicles (FCEVs) using hydrogen gas are zero emission vehicles, thus emission measurement for combustion vehicles is not applicable. The hydrogen gas consumption for fuel economy will be measured by the stabilized pressure/temperature method, mass flow method and electrical current method, etc. In this research, weight method with a newly manufactured test equipment is applied to measure the hydrogen consumption because above 3-methods have a deviation. The hydrogen consumption is directly calculated by the weight differences of the external hydrogen tank before and after the chassis dynamometer test. Ultimately the fuel economy for FCEVs is obtained with a deviation less than 1% in all chassis dynamometer tests.

  • PDF

Commercial Hydrogen Vehicle Power Distribution Simulation Using Fuzzy Control (퍼지 제어를 이용한 수소 상용차 전력 분배 시뮬레이션)

  • JAESU HAN;JAESU HAN;JONGBIN WOO;SANGSEOK YU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.369-380
    • /
    • 2023
  • There is no clear standard for estimating the power distribution of fuel cells and batteries to meet the required power in hydrogen electric vehicles. In this study, a hydrogen electric vehicle simulation model equipped with a vehicle electric component model including a fuel cell system was built, and a power distribution strategy between fuel cells and batteries was established. The power distribution model was operated through two control strategies using step control and fuzzy control, and each control strategy was evaluated through data derived from the simulation. As a result of evaluation through the behavior data of state of charge, fuel cell current and balance of plant, fuzzy control was evaluated as a proper strategy in terms of control stability and durability.

FUEL CELL ELECTRIC VEHICLES: RECENT ADVANCES AND CHALLENGES - REVIEW

  • Yang, W.C.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.9-16
    • /
    • 2000
  • The growing concerns on environmental protection have been constantly demanding cleaner and more energy efficient vehicles without compromising any conveniences provided by the conventional vehicles. The recent significant advances in proton-exchange-membrane (PEM) fuel cell technology have shown the possibility of developing such vehicles powered by fuel cells. Several prototype fuel cell electric vehicles (FCEV) have been already developed by several major automotive manufactures, and all of the favorable features have been demonstrated in the public roads. FCEV is essentially a zero emission vehicle and allows to overcome the range limitation of the current battery electric vehicles. Being motivated by the laboratory and field demonstrations of the fuel cell technologies, variety of fuel cell alliances between fuel cell developers, automotive manufactures, petroleum companies and government agencies have been formed to expedite the realization of commercially viable FCEV. However, there still remain major issues that need to be overcome before it can be fully accepted by consumers. This paper describes the current fuel cell vehicle development status and the staggering challenges for the successful introduction of consumer acceptable FCEVS.

  • PDF

Study on the Electric Insulation Characteristics in a Fuel Cell Vehicle (연료전지 차량의 전기적 절연 특성에 관한 연구)

  • Yu, Jung-Han;kim, Duck-Whan;Kim, Ju-Han;Jeong, Kwi-Seong;Kum, Young-Bum;Kim, Sae-Hoon;Ahn, Deuk-Kuen
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.150-155
    • /
    • 2012
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack power output is needed to be approximately 100 kW to meet the requirements of automotive applications. In order to secure the electric safety for drivers, passengers and mechanics, it is very important to understand phenomena of an electric insulation in a fuel cell vehicle. In this study, we studied the electric insulation properties and the insulation resistance of stack, system and vehicle in the field of fuel cell was estimated at the applied voltage of 500 V, respectively. Also we discussed the insulation factors such as the conductivity of coolant, the element of vehicle design and the intrinsic resistance of the vehicle components.

Development of An Accelerated Durability Test Mode for Fuel Cell (연료전지 가속내구모드 개발)

  • LEE, YONGHEE;OH, DONGJO;JEON, UISIK;LEE, JONGHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.493-498
    • /
    • 2015
  • The fuel cell vehicle is a type of hydrogen vehicle which uses a fuel cell to produce electricity, powering its on-board electric motor. The fuel cell vehicle driving principle is completely different from the internal combustion engine vehicle. In order to ensure the durable quality of the fuel cell vehicle, durability test mode considering the characteristics of the fuel cell must be developed. In this study, we derived the durability test mode profile through collecting and analyzing fuel cell vehicle driving data. Then, the accelerated durability test mode is developed by adding degradation conditions and is experimentally validated to have an acceleration factor of 5~6.