• Title/Summary/Keyword: hydrogen extraction

Search Result 158, Processing Time 0.024 seconds

Preparation of Molecularly Imprinted Polymers Using Photocross-linkable Polyphosphazene and Selective Rebinding of Amino Acids

  • Lee, Seung-Cheol;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.522-527
    • /
    • 2009
  • A photocrosslinkable polyphosphazene was used for molecular imprinting. We synthesized polyphosphazene (3) having urea groups for complexation with N-carbobenzyloxyglycin (Z-Gly-OH, template) and chalcone groups for cross-linking reaction. As substituents, 4-hydroxycha1cone (1) and N-(4-hydroxyphenyl)-N'-ethylurea (2) were prepared. Choloro groups of poly(dichlorophosphazene) were replaced by the sequential treatment with sodium salts of compounds 1 and 2, and trifluoroethanol. The template molecule was complexed with the urea groups on the polymer chains via hydrogen bonding. A thin polymer film was prepared by casting a solution of the complex of polymer 3 and the template in dimethylformamide on a quartz cell and irradiated with 365 nm UV light to yield a cross-linked film with a thickness of about $16{\mu}m$. The template molecules in the film were removed by Soxhlet extraction with methanol/acetic acid. The control polymer film was prepared in the same manner for the preparation of the imprinted polymer film, except that the template and triethylamine were omitted. In the rebinding test, the imprinted film exhibited much higher recognition ability for the template than the control polymer. We also investigated the specific recognition ability of the imprinted polymer for the template and its structural analogues. The rebinding tests were conducted using Z-Glu-OH, Z-Asp($O^tBu$)-OH, and Z-Glu-OMe. The imprinted film showed higher specific recognition ability for the template and the lowest response for Z-Asp($O^tBu$)-OH.

Versatilities of Calix[4]pyrrole Based Anion Receptors

  • Lee, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.768-778
    • /
    • 2011
  • Calixpyrroles and related macrocycles are non-planer synthetic anion receptors that have attracted considerable attentions in recent years. Although the synthesis of calix[4]pyrrole (known as meso-octamethylporphyrinogen) was reported more than 100 years ago, the anion binding properties were first discovered in 1996. The simple calix[4]pyrroles can be synthesized in single step in high yield by condensation of pyrrole with acetone. The compounds showed preferential binding for halide anions including fluoride, phosphate, carboxylate, and chloride in organic media. Efforts to improve the anion affinity of calix[4]pyrrole and to enhance its selectivity have led to the synthesis of a variety of new calixpyrrole derivatives. Among the various modifications, introduction of straps on one side of the calix[4]pyrroles are the most effective. Incorporation of aromatic rings other than pyrroles also exhibited interesting binding behaviour. Introduction of signalling units as part of the strapping element enable to detect the anions on chromogenic or fluorogenic fashion. Finding of the anion transport properties across the membrane and cytotoxic effects of the calix[4]pyrroles open new window for calixpyrrole-related research. The polymer-incorporated systems have also been employed as anion complexants in solvent-solvent extraction. These old, yet easy-to-make macrocycles have well advanced more recently with the discovery of the ion-pair complexation properties. In this review, the synthetic developments and anion binding properties of calixpyrroles for the last decades will be discussed and will cover the advances in calixpyrrole chemistry.

Aqueous Chemistry of Molybdenum (몰리브덴의 용액화학)

  • Lee, Man Seung;Choi, Seung Hoon
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.44-49
    • /
    • 2018
  • $MoO{_4}^{2-}$ is the stable chemical species of Mo(VI) in alkaline solution. In the pH range of 2 to 6, condensation polymerization between $MoO{_4}^{2-}$ and hydrogen ion results in the formation of various polyanions of Mo(VI). Polycations of Mo(VI) begin to form when solution pH is less than 2. As the concentration of inorganic acid increases, polycations of Mo(VI) can react with the anion of the inorganic acid, resulting in the formation of heteranions of Mo(VI). The distribution of Mo(VI) species at pH < 6 depends on the concentration of Mo(V) and inorganic acid. In order to analyze the solvent extraction and ion exchange data on Mo(VI) from concentrated inorganic acid solution, it is necessary to elucidate the nature of Mo(VI) complexes.

Polysaccharide Extraction and Comparison of Free Radical Scavenging Activities from Tremella fuciformis and Auricularia auricula Fruit Body (흰목이와 흑목이 버섯의 다당추출 및 유리라디칼 소거활성 비교)

  • Kim, Hyeon-Min;Hur, Won;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.6-14
    • /
    • 2011
  • The polysaccharides from fruit body of Auricularia auricula and Tremella fuciformis were extracted using hot water, and partially purified through ethanol precipitation and dialysis. Free radical scavenging activities of the crude and purified polysaccharides were examined and compared each other. Free radical scavenging activities of the partially purified polysaccharides were higher than those of crude polysaccharides. DPPH free radical, ABTS radical and SOD-like activities of partially purified polysaccharide at 1 mg/mL of concentration from A. auricula were 61.7, 9.6 and 38.9%, respectively, while those of T. fuciformis were 9.6, 5.7 and 15.3%, respectively. Results of site and non-site specific hydroxyl radical scavenging activities indicated that the partially purified polysaccharide fractions from A. auricula and T. fuciformis exhibited the hydroxyl radical scavenging effect by hydrogen donating ability and iron ion chelating ability. Also, reducing powers of A. auricula and T. fuciformis were 77.1 and 14.7% of BHT (0.1%) as standard, respectively. It was suggested that antioxidant activities of A. auricula were about 1.4~6.4 times higher than those of T. fuciformis due to different levels of polyphenol content.

Antioxidative and α-Glucosidase Inhibition Activit of Extracts Fraction from Saururus chinensis Baill (삼백초(Saururus chinensis Baill) 용매분획물의 항산화활성 및 α-Glucosidase 저해활성 측정)

  • Lee, Youn Ri
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.3
    • /
    • pp.289-294
    • /
    • 2021
  • The antioxidant activity and α-glucosidase inhibitory activity of the solvent fraction fractionated from the methanol extract of Saururus chinensis Baill were examined. As a result of measuring the yields of methanol, hexane, chloroform, ethylacetate, butanol, and water fractions, the extraction yield of fraction was 18.60, 3.38, 24.03, 7.75, 8.11 and 62.57%, respectively. The total polyphenol content of the methanol extract of Saururus chinensis Baill was 13.40, 4.62, 7.39, 31.24, 25.76 and 5.64 mg GAE/g, respectively. DPPH radical scavenging activity (IC50%) results were 20.81, 5.47, 10.15, 22.63, 19.68 and 21.06 ug/mL, respectively, and hydroxyl radical scavenging activity (IC50%) results were 15.81, 2.69, 8.84, 12.80, 3.70 and 3.39 ug/mL. Hydrogen peroxide scavenging activity scavenging activity measurement (IC50%) showed 33.63, 8.88, 16.93, 32.84, 33.79, and 33.71 ug/mL in methanol, hexane, chloroform, ethyl acetate butanol, and water fractions, respectively. The α-glucosidase inhibitory activity of the solvent fraction fractionated with the methanol extract of 300 sec was measured for the α-glucosidase inhibitory activity of methanol, hexane, chloroform, ethyl acetate butanol, and water fraction, respectively, 15.85, 10.84, 15.74, 24.90, 2.58 and 35.70%.

Experimental and simulation study on the backstreaming positive ions on the quarter-size negative ion source for CRAFT NNBI test facility

  • Yongjian Xu;Yuwen Yang;Jianglong Wei;Ling Yu;Wen Deng;Rixin Wang;Yuming Gu;Chundong Hu;Yahong Xie
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.546-551
    • /
    • 2024
  • As an effective methods of plasma heating, neutral beam injection (NBI) systems based on negative hydrogen ion sources will be utilized in future magnetic-confinement nuclear fusion experiments. Because of the collisions between the fast negative ions and the neutral background gas, the positive ions are inevitable created in the acceleration region in the negative NBI system. These positive ions are accelerated back into the ion source and become high energy backstreaming ions. In order to explore the characters of backstreaming ions, the track and power deposition of backstreaming H+ beam is estimated using the experimental and simulation methods at NNBI test facility. Results show that the flux of backstreaming positive ions is 1.93 % of that of negative ion extraction from ion source, and the magnet filed in the beam source has an effect on the backstreaming positive ions propagation.

Comparison of Anti-Oxidative Activities of Perilla frutescens Extracts by Extraction Methods (추출 방법에 따른 자소엽 추출물의 항산화 효과 비교)

  • Seo, In-Yeong;Kim, Hee-Su;Jang, Kyeong-Su;Yeo, Min-Ho;Kim, Hye-Ran;Jung, Bo-Kyoung;Chang, Kyung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.12-19
    • /
    • 2018
  • Perilla frutescens (P. frutescens) is one of evergreen shrubs belonging to the Labiatae and is grown wildly in Korea. This study was carried out to evaluate the anti-oxidative effects of Perilla frutescens Extracts by Extraction Methods (water, heating and sonication). Anti-oxidative effects were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and total phenol content. Cell viability and hepatoprotective effects were identified by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Among various extracts, P. rutescens extracts by sonication showed the highest DPPH radical scavenging activity at $5000{\mu}g/mL$. Total phenolic content in P. frutescens extracts by sonication was $51.60{\pm}1.06mg\;GAE/g$ extract. However, P. frutescens extracts did not show hepatoprotective effects. This study identified anti-oxidative effects of P. frutescens extracts by sonication, and it would be necessary to perform further studies of P. frutescens extracts by sonication.

A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process (폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구)

  • Chae, Byungman;Lee, Seokhwan;Kim, Deuk-Hyeon;Seo, Eun-Ju;Kim, Hyunil;Lee, Seunghwan;Lee, Sangwoo
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.116-121
    • /
    • 2020
  • In this paper, the recycling of waste Ni-MH battery by-products for electric vehicle is studied. Although rare earths elements still exist in waste Ni-MH battery by-products, they are not valuable as materials in the form of by-products (such as an insoluble substance). This study investigates the recovering of rare earth oxide for solvent extraction A/O ratio, substitution reaction, and reaction temperature, and scrubbing of the rare earth elements for high purity separation. The by-product (in the form of rare earth elements insoluble powder) is converted into hydroxide form using 30% sodium hydroxide solution. The remaining impurities are purified using the difference in solubility of oxalic acid. Subsequently, Yttrium is isolated by means of D2EHPA (Di-[2-ethylhexyl] phosphoric acid). After cerium is separated using potassium permanganate, lanthanum and neodymium are separated using PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) and it is calcinated at a temperature of 800 ℃. As a result of the physical and chemical measurement of the calcined lanthanum and neodymium powder, it is confirmed that the powder is a microsized porous powder in an oxide form of 99.9% or more. Rare earth oxides are recovered from Ni-MH battery by-products through two solvent extraction processes and one oxidation process. This study has regenerated lanthanum and neodymium oxide as a useful material.

The beneficial effect of ginsenosides extracted by pulsed electric field against hydrogen peroxide-induced oxidative stress in HEK-293 cells

  • Liu, Di;Zhang, Ting;Chen, Zhifei;Wang, Ying;Ma, Shuang;Liu, Jiyun;Liu, Jingbo
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.169-179
    • /
    • 2017
  • Background: Ginsenosides are the main pharmacological components of Panax ginseng root, which are thought to be primarily responsible for the suppressing effect on oxidative stress. Methods: 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and oxygen radical absorption capacity were applied to evaluate the antioxidant activities of the ginsenosides. Human embryonic kidney 293 (HEK-293) cells were incubated with ginsenosides extracted by pulsed electric field (PEF) and solvent cold soak extraction (SCSE) for 24 h and then the injury was induced by $40{\mu}M$ $H_2O_2$. The cell viability and surface morphology of HEK-293 cells were studied using MTS assay and scanning electron microscopy, respectively. Dichloro-dihydro-fluorescein diacetate fluorescent probe assay was used to measure the level of intracellular reactive oxygen species. The intracellular antioxidant activities of ginsenosides were evaluated by cellular antioxidant activity assay in HepG2 cells. Results: The PEF extracts displayed the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and stronger oxygen radical absorption capacity (with an oxygen radical absorption capacity value of $14.48{\pm}4.04{\mu}M\;TE\;per\;{\mu}g/mL$). The HEK-293 cell model also suggested that the protective effect of PEF extracts was dose-dependently greater than SCSE extracts. Dichloro-dihydro-fluorescein diacetate assay further proved that PEF extracts are more active (8% higher than SCSE extracts) in reducing intracellular reactive oxygen species accumulation. In addition, scanning electron microscopy images showed that the HEK-293 cells, which were treated with PEF extracts, maintained more intact surface morphology. Cellular antioxidant activity values indicated that ginsenosides extracted by PEF had stronger cellular antioxidant activity than SCSE ginsenosides extracts. Conclusion: The present study demonstrated the antioxidative effect of ginsenosides extracted by PEF in vitro. Furthermore, rather than SCSE, PEF may be more useful as an alternative extraction technique for the extraction of ginsenosides with enhanced antioxidant activity.

Role of Electrode Reaction of Electrolyte in Electrokinetic-Fenton Process for Phenanthrene Removal (동전기-펜턴 공정에서 전해질의 전극반응이 처리효율에 미치는 영향)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • The effects of electrolytes were investigated on the removal efficiency when several different electrolytes were used to change the electrode reaction in an electrokinetic (EK)-Fenton process to remediate phenanthrene-contaminated soil. Electrical potential gradient decreased initially due to the ion entrance into soil and then increased due to the ion extraction from soil under the electric field. Accumulated electroosmotic flow was $NaCl>KH_2PO_4>MgSO_4$ at the same concentration because the ionic strength of $MgSO_4$ was the highest and $Mg(OH)_2$ formed near the cathode reservoir plugged up soil pore to inhibit water flow. When hydrogen peroxide was contained in electrolyte solution, removal efficiency increased by Fenton reaction. When NaCl was used as an electrolyte compound, chlorine ($Cl_2$) was generated at the anode and dissolved to form hypochlorous acid (HClO), which increased phenanthrene removal. Therefore, the electrode reaction of electrolyte in the anode reservoir as well as its transport into soil should be considered to improve removal efficiency of EK-Fenton process.