• Title/Summary/Keyword: hydrogen engine

Search Result 361, Processing Time 0.024 seconds

Applicability of Fuel Supply System for HCNG Engine (HCNG 엔진용 연료시스템의 적용성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi;Lee, Janghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • CNG buses has contributed to improve air quality in cities. But it is difficult to meet the next emission regulations such as EURO-VI without the help of additional post-processing device. Hydorgen has higher flame speed and lower combustion temperature that make it thermal efficiency increase with leaner operation. Using hydrogen natural gas blend (HCNG) fuel is promising technology which can reduce $NO_x$ and $CO_2$ emissions for a natural gas vehicle. However, fuel flow rate of HCNG should be increased since hydrogen's energy density per volume is much smaller than natural gas. In the present study, the characteristics of fuel supply system and its applicability were evaluated in a heavy duty natural gas engine. The results showed that the potential of fuel pressure regulator and fuel metering valve had enough capacity with HCNG. Employed mixer did not affect the distribution characteristics of mixture.

Development of DME Engine Using 3.9 Liter Diesel Engine with Mechanical Type Fuel System (3.9 리터 기계식 디젤 엔진을 이용한 DME 엔진 개발 연구)

  • JANG, JINYOUNG;WOO, YOUNGMIN;KIM, GANGCHUL;CHO, CHONGPYO;JUNG, YONGIN;KO, AHYUN;PYO, YOUNGDUG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.307-313
    • /
    • 2020
  • The 3.9 liter diesel engine with a mechanical fuel injection system was converted to di-methyl ether (DME) engine and performance optimized. In order to switch to the DME engine, the plunger of the high pressure fuel pump was replaced and the diameter of the injector nozzle was increased. Through this, the disadvantage of DME having low calorific value per volume can be compensated. To optimize the performance, the number of injector nozzle holes, injector opening pressure, and fuel injection timing were changed. As a result, the optimum number of injector nozzle holes was 5, the injector opening pressure was from 15 MPa to 18 MPa, and the injection timing was 15 crank angle degree before top dead center (CAD BTDC). The power was at the same level as the base diesel engine and nitrogen oxides (NOx) emissions could be reduced.

Combustion Characteristics of Synthetic Gas from Flame Pyrolysis Gasification of Polymetric Wastes and their Applicability to Gas Engine System (합성고분자류 폐기물의 화염열분해 가스화에 의한 발생가스의 연소특성 및 가스엔진시스템에의 적용연구)

  • Kim, Tae Kwon;Jang, Jun Young;Shim, Sung Hoon;Kim, Jeung Bea;Kim, Byung Ha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.233-243
    • /
    • 1999
  • Combustion characteristics of synthetic gas from flame pyrolysis gasification of polymetric wastes are reported and the applicability of synthetic gas from flame pyrolysis gasification to a gas engine system is presented. Engine power is easily predicted by the volume percentage of the synthetic gas. Measurements have been made to obtain the range of flame existence in the function of volume percentage of CO and $H_2$ gases in the synthetic gas. In order to clarify the emission of the flames, NOx measurements by chemiluminescent analyser are taken in flames with different equivalent ratios. From the results of the engine performance data we also have demonstrated that the output of the gas engine modified from a LPG engine is about 5 ps at normal rating. We conclude that synthetic gas from flame pyrolysis gasification of polymetric wastes is applicable to a gas engine system.

  • PDF

Development of 100N class $H_{2}O_2$ Mono-propellant Rocket Engine (100N급 $H_{2}O_2$ 단일 추진제 로켓 엔진의 개발)

  • Lee Su-Lim;Park Joo-Hyuk;Lee Choog-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.159-167
    • /
    • 2005
  • Considering the increase of interest in $H_{2}O_2$ as a rocket propellant, a test facility and a rocket engine have been developed to research in areas of $H_{2}O_2$ mono-propellant propulsion. A detailed design-study of a $H_{2}O_2$ mono-propellant rocket engine of 100-N thrust is presented. Several firings attempted in early stage had some problems with misfire and chamber pressure decrease. Low environmental temperature and impurities included in hydrogen peroxide were considered to be the reasons. Addressing these points resulted in successful firing of the rocket engine and obtained thrust about $100\sim107-N.$

  • PDF

Studies on syngas production and gas engine generation of soild waste gasification in the fixed bed gasification melting furnace (고정층 가스화 용융로에서의 고상폐기물 가스화 합성가스 생산 및 가스엔진 발전 연구)

  • Gu, Jae-Hoi;Kim, Su-Hyun;Yoo, Young-Don;Yun, Yong-Seung;Lee, Hyup-Hee;Nam, Sang-Ik;Yoon, Jae-Kwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.717-720
    • /
    • 2007
  • The 3 ton/day-scale pilot plant consists of compressor, feed channel, fixed bed type gasification & melting furnace, quench scrubber, demister, flare stack and gas engine. Syngas composition of gasification using the 35.50(waste I), 4.34%(wasteII) moisture-containing solid waste showed waste I CO 25-35%, 20-40% hydrogen, waste II 25-35%, 20-30% hydrogen. Gasification melting furnace was operated $1,500{\sim}1,600^{\cdot}C$. Gas engine was generated $35{\sim}40$ kW as waste gasification syngas.

  • PDF

A Basic Research for Development of $H_2O_2$ Mono-propellant Rocket Engine ($H_2O_2$ 단일 추진제 로켓 엔진 개발에 대한 기초연구)

  • Lee Su-Lim;Park Joo-Hyuk;Lee Choog-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.110-117
    • /
    • 2006
  • Considering the increase of interest in $H_2O_2$ as a rocket propellant, a test facility and a rocket engine have been developed to research in areas of $H_2O_2$ mono-propellant propulsion. A detailed design-study of a $H_2O_2$ mono-propellant rocket engine of 100-N thrust is presented. Several firings attempted in early stage had some problems with misfire and chamber pressure decrease. Low environmental temperature and impurities included in hydrogen peroxide were considered to be the reasons. Addressing these points resulted in successful firing of the rocket engine and obtained thrust about $100\sim107-N$.

  • PDF

Performance and Emission Characteristics of Ethanol and Methanol Gasoline Blended Fuels in a Spark Ignition Engine (스파크 점화기관에서 가솔린 에탄올과 메탄올 혼합 연료의 성능과 배기 특성)

  • HAN, SUNG BIN;PARK, JUN YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.441-446
    • /
    • 2016
  • Alcohols are particularly attractive as alternative fuels because they are a renewable resource. This paper describes the performance and emission characteristics of ethanol and methanol gasoline blended fuels in a spark ignition engine. This experimental results showed that alcohol gasoline blended fuels decreased the torque, brake mean effective pressure, and brake power decreased when alcohol blended fuels were applied to a gasoline engine and also CO, HC and NOx emissions were reduced in accordance with the contents of alcohol contents.

Starting of a Linear Generator Driven by a Hydrogen Engine (수소연소 리니어 발전기의 초기 구동방안)

  • Jeong, Seung-Gi;Kim, Kyung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.198-200
    • /
    • 2007
  • A linear generator driven by hydrogen (or other kind of fuel) combustion engine requires special consideration for starting because of its none-conventional way of operation. This study investigates the possibility of replacing mechanical (hydraulic) start-up with electrical motoring. Simulation study based on 1 kW prototype system shows that the mover position of a linear generator can be controlled with a proper current control of power converter.

  • PDF

The prediction of performane and emission of hydrogen fueled spark ignition engine (수소연료 전기점화기관의 성능 및 배출물 예측)

  • 김응서;노승탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.47-54
    • /
    • 1984
  • The predictions of the mean effective pressure and the exhaust emission of NOx in hydrogen fueled spark ignition engine were studied. And the predictions were compared to the experimental results of D.B. Kittelson and H.S.Homan. The modeling was based on Otto cycle and the prediction of NOx was performed by extended Zeldovich mechanism. The differences between predictions and experimental results were 20 - 30% in the mean effective pressure and 10 - 20% in the concentration of NOx where the equivalence ratio .phi. was 0.6 - 0.8.

  • PDF

Comparison of Supersonic Jet Characteristics between Hydrogen and Helium injected by Small-cone-angle Pintle-type Hydrogen Injector (수소 및 헬륨을 이용한 작은 원추각 핀틀형 수소인젝터의 초음속 제트 특성 비교)

  • Gyuhan Bae;Juwan Lim;Jaehyun Lee;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Understanding the fundamental characteristics of supersonic hydrogen jets is important for the optimization of combustion in hydrogen engines. Previous studies have used helium as a surrogate gas to characterize the hydrogen jet characteristics due to potential explosion risks of hydrogen. It was based on the similarity of hydrogen and helium jet structures in supersonic conditions that has been confirmed using hole-type injectors and large-cone-angle pintle-type injectors. However, the validity of using helium as a surrogate gas has not been examined for recent small-cone-angle pintle-type injectors applied to direct-injection hydrogen engines, which form a supersonic hollow cone near the nozzle and experience the jet collapse downstream. Differences in the physical properties of hydrogen and helium could alter the jet development characteristics that need to be investigated and understood. This study compares supersonic jet structures of hydrogen and helium injected by a small-cone-angle (50°) pintle-type hydrogen injector and discusses their differences and related mechanisms. Jet penetration length and dispersion angle are measured using the Schlieren imaging method under engine-like injection conditions. As a result, the penetration length of hydrogen and helium jets showed a slight difference of less than 5%, and the dispersion angle showed a maximum of 10% difference according to the injection condition.